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Nonlinearity through rectification

Recall the equation for the firing rates in the linear model

τr
dv

dt
= −v +Wu +Mv

where u was the firing rate vector of the input layer, v the vector of
the output layer.

Negative firing rates in a linear model?

The simplest way to fix this problem is to use rectification:

F (Wu +Mv) = [Wu +Mv ]+

(in essence, simply overriding negative components with zeros)
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Nonlinearity through rectification

We investigate properties of the rectified continuous model

τr
dv(θ)

dt
= −v(θ) + [h(θ) +

λ1

π

∫ π

−π
dθ′ cos(θ − θ′)v(θ′)]+

and try to compare its characteristics to the linear model

τr
dv(θ)

dt
= −v(θ) + h(θ) +

λ1

π

∫ π

−π
dθ′ cos(θ − θ′)v(θ′)

(no real reason for taking M = cos is given; probably out of
expedience)
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Characteristic 1 - Nonlinear Amplification
Compared to the linear model, the amplification is smoother and
smaller.
The restriction λ1 < 1, necessary in the linear model, is no longer
necessary.

Seong Kyun Jung (Seoul National University) Ch 7. Network Models June 1, 2023 6 / 35



Characteristic 2 - Nonlinear Input Selection

The output of a rectified network tends to be unimodal; thus unlike
the linear network, superposition no longer holds
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Characteristic 3 - Sustained Activity

Similarly to the case of input integration, where a linear network
showed ”memory”, rectified networks exhibit this behavior as well.
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Maximum Likelihood and Network Recoding

Pouget et al. (1998): interpret the location of the characteristic
pattern (i.e. the peak of the output) as the neuron’s recoding of noisy
stimulus

Recurrent networks can be used to improve recoding performance of
simple methods like vector decoding
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Applications - Models of the Primary Visual Cortex

Ben-Yishai, Bar-Or, Sompolinsky (1995): simulate behavior of simple
cells:

τr
dv(θ)

dt
= −v(θ) + [h +

∫ π
2

π
2

dθ′

π
(−λ0 + λ1 cos(2(θ − θ′)))v(θ′)]+

Chance, Nelson, Abbott (1999): simulate behavior of complex cells
when λ1 ≈ 1:

τr
dv(ϕ)

dt
= −v(ϕ) + [h(ϕ) +

λ1

2π

∫ π

−π
dϕ′v(ϕ′)]+
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Network Stability

In the presence of constant input, what happens to the network?

The most intuitive conjecture is that the network converges to a
steady state; this is not guaranteed but does often hold.

Lyapunov functions help in this analysis.
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Network Stability - the linear case

We analyze the linear model case with instantaneous adaptation; that
is,

τs
dI

dt
= −I + h +M ∗ F (I )

where I is the synaptic current, F (I ) is the firing rate vector

The function L satisfies dL
dt < 0 whenever dI

dt ̸= 0:

Since dL
dt depends linearly on (dIadt )

2, if L is bounded from below,
convergence to a steady state is guaranteed.
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Associative Memory

Short-term memory is associated with sustained activity of the
neurons (input integration, rectified recurrent network)

What happens in long-term memory? A similar input is given, then
we ”recall” something

”In a network associative memory, recurrent weights are adjusted so
that the network has a set of discrete fixed points identical to the
patterns of activity that represent the stored memories” (p. 261)
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Constructing an Associative Memory Network

Memory pattern: vm where m is the index of the memory (so vm is
an entire vector of firing rates)

The network’s goal is to modify the recurrent weights s.t. the vm

become basins of attraction.

Suppose the network evolves according to the delayed evolution +
nonlinear model, with the assumption h = 0:

τr
dv

dt
= −v + [Mv ]+

A necessary condition for recall is that the vm must all be fixed points:

vm = [Mvm]+,m = 1, 2, ...,Nmem
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Computation of Associative Memory Network

Big Question: How many patterns can be stored in a memory
network?

We make some simplifying assumptions:
▶ Suppose the patterns consist of ”active” neurons (with firing rate c)

and ”inactive” neurons (with firing rate 0)
▶ Suppose each pattern consists of αNv active neurons
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Computation of Associative Memory Network
We try to construct conditions where a certain number of patterns
can be supported by a network.

Suppose we have a matrix K where

K · vm = λvm

for m = 1, 2, ...,Nmem.

Take M = K − nTn
αNv

where n = (1, 1, ..., 1).

A sufficient condition for

F (λvm − cn) = F (M · vm) = vm

is that for inactive neurons,

F (−c) = 0

and for active neurons,

F (c(λ− 1)) = c
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Computation of Associative Memory Network

It is relatively easy to find an activation function F that satisfy the
two conditions; so it remains to build a matrix K

The matrix

K =
λ

c2αNv (1− α)
ΣNmem
n=1 vn(vn − αcn)

satisfies K · vm ≈ λvm, using the fact that the active neurons in
different memories are uncorrelated.

Thus in this simplified model, Nmem ≈ Nv .
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Computation of Associative Memory Network
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7.5. Excitatory-Inhibitory Networks

Until now, the matrix M describing the recurrent weights was
assumed to be symmetric.

We now relax this assumption; now, the matrix is no longer
symmetric.

Simplifying into a model where all excitatory neurons and inhibitory
neurons are homogeneous, we have two equations which describe the
firing rates:

τE
dvE
dt

= −vE + [MEEvE +MEI vI − γE ]+

τI
dvI
dt

= −vI + [MII vI +MIEvE − γI ]+

Seong Kyun Jung (Seoul National University) Ch 7. Network Models June 1, 2023 21 / 35



Phase-Plane Methods and Stability Analysis

A big question is whether such models still exhibit constant
steady-state behavior.

In the simplified case, a phase plane describes the evolution of the
two parameters vE , vI and their steady-state behavior.
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Phase-Plane Methods and Stability Analysis

Since the system is a system of first-order linear ODEs near the fixed
point, the coefficients given by the matrix(

MEE−1
τE

MEI
τE

MIE
τI

(MII−1)
τI

)

determine the stability of the system.

In particular, the real parts of the eigenvalues of this matrix determine
exponential attraction or repulsion around the fixed point.
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Phase-Plane Methods and Stability Analysis
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Phase-Plane Methods and Stability Analysis
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Phase-Plane Methods and Stability Analysis

Note that without rectification, there would be no limit cycle in Fig
7.19.

The changes in the parameters causes the behavior of the system to
change (Hopf bifurcation); in the Figures this was caused by τI .
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Applications of Oscillatory Networks

Li, Hopfield (1989): modeled the olfactory bulb’s oscillatory behavior
using an excitatory-inhibitory network with MEE = MII = 0

Li, Dayan (1999): used excitatory-inhibitory dynamics to construct
recurrent networks which :

▶ allows for more amplification
▶ does not show tuned (eg. angle-dependent) output with untuned (eg.

angle-independent) input
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Applications of Oscillatory Networks
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Method 1. The Boltzmann Machine

We consider a model where a neuron takes one of two states (fire or
not fire), which is determined stochastically.

Suppose the state of unit a is determined by

Ia(t) = ha(t) + ΣNv
a′=1Maa′va′(t)

P[va(t +∆t) = 1] =
1

1 + exp(−Ia)

Note that F is the sigmoid function, and that the decision-making
process is stochastic.
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Solving the Boltzmann Machine

The equation describes a Markov chain, where the state at t +∆t
depends only on the state of t, and not more previous states.

(Glauber dynamics) v ”converges” to the probability distribution

P[v ] =
exp(−E (v))

Z
,Z = Σvexp(−E (v))

where

E (v) = −h · v − 1

2
vTMv
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Method 2. Mean-field Approximation

The mean-field approximation approximates the Boltzmann machine

Instead of I depending on v, thus making I stochastic, we can think of
the case where I is deterministic by

dI

dt
= −I + h +M · F (I )

with F =(sigmoid), and stochasticity is introduced by

P[va = 1] = F (Ia)

The probability distribution for the entire vector v is

Q[v ] = ΠNv
a=1F (Ia)

va ∗ (1− F (Ia))
1−va
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Relationship between the two methods

It can be shown that the Lyapunov function of eq 7.40 can be
expressed as

L(I ) = DKL(Q,P) + K

where K is constant and DKL is the Kullback-Leibler divergence.

Thus, the dynamics of eq 7.39 can be described as trying to minimize
the difference between Q and P.

The Boltzmann machine allows us to determine how changing M
affects the distribution of the output. Thus, it will continue to be
used in later chapters (eg. how do neurons ”learn”?)
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Thank You
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