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Introduction

@ So far we have talked about individual neurons and their behaviors.

@ We now wish to talk about models that try to capture the behavior of
neural networks.
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Motivation

@ In Ch 6 we introduced a model of a single neuron model that
propagates " Action Potential” along its axon.

@ So in theory, by concatenating and connecting multiple neurons, we
can construct neural networks!

o But...
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Some Notation

e All firing rate models follow the form of " presynaptic input (firing rate
of presynaptic neuron) — synaptic input (synaptic current) — >
postsynaptic output (firing rate of postsynaptic neuron)”

@ Is: total synaptic current (Recall that synaptic current causes ions to
flow, thus influencing the spike sequences of neurons)

@ u: presynaptic firing rate of a single neuron
@ v: postsynaptic firing rate of a single neuron

@ We use vector notation for multiple neurons.
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The Total Synaptic Current

@ (1 action potential, 1 synapse) wy,Ks(t): synaptic weight * synaptic
kernel (b: input index, s: synapse index)

e (many action potentials, 1 synapse) Assuming linearity,

t
wpZe <t Ks(t — ti) = Wb/ d7Ks(t — 7)pp(7)
—0o0
where pj (the neural response function) is a corresponding sum of

Dirac deltas.

e (many action potentials, many synapses) Assuming linearity,

t
Is = Zgilwb/ dTKs(t — 7)pp(T)
o0
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Construction of a Firing-Rate model

@ Instead of the neural response function, we plug in the firing rate
up(7) to obtain

t
I = wab/ drKa(t — 7)us(7)

o A widely used synaptic kernel is given by
t

Ks(t) = exp(——) /7
Tr

which expressese decay of the synaptic current in the absence of
additional stimuil.
o Taking derivatives with respect to t gives

dl
Ts?: = —Is + Tpwpup

so we can express /s as a differential equation.
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Completing the Model

@ We have up, and have obtained /s by integrating uy,

@ To conclude the model we need to model the relationship between v
and /s.

@ Two possible candidates:

dl.
Tsd—: =—ls+w-uv=F(l)

where F is the threshold linear function, and

dv
T = —v+ F(ls(t))

Note that 7, # 75!!
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Firing-Rate Dynamics
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Does the firing rate instantly trail the input current, or is there a lag? The
figures show that both may occur.
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Feedforward and Recurrent networks

@ Network models may involve many outputs; in this case the wy
becomes a matrix (indexed by input and output) instead of a vector
(indexed only by input)

@ In case of an interconnection between the output layers, we simply
describe the synaptic weights by another matrix M;

@ For example, the delayed firing rate adjustment model becomes

T,% = —v+ F(Wu+ Mv)
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A Caveat

@ We consider some models where M is symmetric.

@ However, this actually may be problematic, violating a principle in
neuroscience called Dale’s Law.

@ Thus if we wish to use symmetric weights for describing
interconnectivity of the output neurons, a specific interpretation of
the dynamics must be assumed.
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Continuously Labeled Networks

@ There is no inherent reason to restrict the input/output neurons to
the integers.

@ In particular, neurons in the primary visual cortex can be
characterized by their preferred orientation angles.
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CL Firing Rate Models

@ The "matrices” W and M now become functions defined on Cartesian
products; e.g. if the neurons are in the primary visual cortex and
indexed by their preferred stimulus angle

W, M :[0,27) x [0,27) = R

@ The dynamical system describint the evolution of the output firing
rate is now dependent on an integral;

d‘;(te) ——v(0)+ Flpa [ dO'W(0,0)u() + M(60.0)(6)))

—T

Tr

Seong Kyun Jung (Seoul National University) Ch 7. Network Models May 25, 2023 15 /30



Table of Contents

© First Week

@ Feedforward Networks

Seong Kyun Jung (Seoul National University) Ch 7. Network Models



Neural Coordinate Transformations 1

@ We look at an example of feedforward networks (which don't have
recurrence M), by calculating the coordinate transformations in
visually guided reaching tasks.
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Some experimental data

Figure 7.4 Coordinate transformations during a reaching task. (A, B) The location
of the target (the gray square) relative to the body is the same in A and B, and
thus the movements required to reach toward it are identical. However, the image
of the object falls on different parts of the retina in A and B due to a shift in the
gaze direction produced by an eye rotation that shifts the fixation point F. (C) The
angles used in the analysis: s is the angle describing the location of the stimulus
(the target) in retinal coordinates, that is, relative to a line directed to the fixation
point; g is the gaze angle, indicating the direction of gaze relative to an axis straight
out from the body. The direction of the target relative to the body is s + g.
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Some experimental data
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Figure 7.5 Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. (A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, un-
like B and C, the horizontal axis refers to the stimulus location in body-based, not
retinal, coordinates (s + g, not s). (B) Turning the monkey’s head by 15° produced
a 15° shift in the response tuning curve as a function of retinal location, indicating
that this neuron encoded the stimulus direction in a body-based system. (C) Model
tuning curves based on equation 7.15 shift their retinal tuning to remain constant
in body-based coordinates. The solid, heavy dashed, and light dashed curves refer
to ¢ = 0°, 10°, and —20° respectively. The small changes in amplitude arise from
the limited range of preferred retinal location and gaze angles in the model. (A, B
adapted from Graziano et al., 1997; C adapted from Salinas and Abbott, 1995.)
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Some experimental data
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Figure 7.6 Gaze-dependent gain modulation of visual responses of neurons in pos-
terior parietal cortex. (A) Average firing-rate tuning curves of an area 7a neuron
as a function of the location of the spot of light used to evoke the response. Stim-
ulus location is measured as an angle around a circle of possible locations on the
screen and is related to, but not equal to, our stimulus variable s. The two curves
correspond to the same visual images but with two different gaze directions. (B)
A three-dimensional plot of the activity of a model neuron as a function of both
retinal position and gaze direction. The striped bands correspond to tuning curves
with different gains similar to those shown in A. (A adapted from Brotchie et al.,
1995; B adapted from Pouget and Sejnowski, 1995.)
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Modeling the Neuron

@ The stimulus of the visual cortex neurons seems to depend on the
"body coordinates” rather than the "retinal coordinates”

@ We model this situation as a feedforward network with one output
neuron and a continuously indexed layer of input neurons

@ In particular, the steady-state firing rate is given by

Voo = F(peps / dédyw(&,7)fu(s —€,8 — 7))

where £ is the preferred retinal location and -y is the preferred gaze
direction.

@ The problem remains whether this integral can become a function of
s + g, which holds if w(§,v) = w(é — g,v + g).
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Linear Recurrent Networks

@ We begin by investigating the simplest recurrent network, the linear

network:
F(Wu+ Mv) = Wu + My

@ The recurrent model becomes

d
Tr—v = —v+ Wu+ Mv
dt

and since the model is linear, we can simply solve it as a system of
first-order linear ODEs (diagonalization and eigenvectors)

@ Suppose the eigenvectors of M are e, u = 1, ..., N, with respective
eigenvalues \,.

@ Since M is assumed to be symmetric, we can choose e, to be
orthonormal, thus giving a coordinate system to express v(t).
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LRN - Analytic Solution

o If Wu (the input) is time-independent, doing some ODE things we get

I ep(- 2 4 g 0perp( L2

o (t) = )
@ Some characteristics of the steady-state values:
(1) Highly explosive - may blow up
(2) If not, approaches the value exponentially
(3) The value depends on the projection of the input onto the
eigenvector
(4) 7, (which dictates the lag) slows down convergence linearly
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LRN - Selective Amplification

@ If some eigenvalues are very close to 1 while others are not, the firing
rate vector will depend only on some coordinates and not others; eg.
if only A7 is close to 1
(e1 . h)e1
Voo A% ~———
1—X)
@ The network only amplifies certain input (firing rate) patterns while
discarding others.
@ Note that mathematically this is just elementary linear algebra...
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LRN - Input Integration

@ Some neurons seem to maintain activity in the absence of additional
stimulus (eg. neurons that maintain eye position); these neurons are
called "integrators”.

@ Integrators can be modelled by LRNs where Wu is time-dependent
and one eigenvalue is exactly 1;

v(t)~ 2 /t dt'er - (W(t")u(t))

Tr Jo
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LRN - Continuous networks

@ Recall that now, M becomes a function, and instead of summation we
need to integrate:

dv(6)
dt

= —v(0) + h(6) + po / " oMo - ()

—T

Tr

where h(6) is the feedforward input and py is density (which we
assume constant).

o If we assume M is 27-periodic and even, under some regularity
conditions we would be able to write M as a trigonometric series;
thus the eigenfunctions would become cosine and sine functions.
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LRN - Continuous Networks

@ The steady-state firing rate becomes
1 do’ cos(,u@) do’ ,
0 0
) = 250 [ Gen0)+ =D [ S h@ ) cos(ua)

sin(u) /7r d_el N\ o /
-I—Zl iy B h(6") sin(p0")
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LRN - Continuous Networks
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Figure 7.8 Selective amplification in a linear network. (A) The input to the neu-
rons of the network as a function of their preferred stimulus angle. (B) The activity
of the network neurons plotted as a function of their preferred stimulus angle in
response to the input of panel A. (C) The Fourier transform amplitudes of the in-
put shown in panel A. (D) The Fourier transform amplitudes of the output shown
in panel B. The recurrent coupling of this network model took the form of equa-
tion 7.33 with &, = 0.9. (This figure, and figures 7.9, 7.12, 7.13, and 7.14, were
generated using software from Carandini and Ringach, 1997.)
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