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Electrical Properties of Neurons
The structure of A Cell

A cell is composed of nucleus, cytoplasm and membrane, etc.

There are microscopic particles (e.g. ions and molecules) inside and
outside the cell.

Figure 1: The structure of the animal cell.
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Electrical Properties of Neurons
Physical Properties of Membrane

The cell membrane is a lipid bilayer 3 to 4 nm thick.

Insulating feature: impermeable to most charged molecules (Cm).

Highly selective (ion) channels (Rm).

channel

pore

lipid bilayer

Figure 2: The cell membrane.
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Electrical Properties of Neurons
Energy Conversion in the Membrane

Membrane potentials are small enough to allow neurons to take
advantage of thermal energy to help transport ions across the
membrane, but are large enough so that the thermal fluctuations do
not swamp the signaling capabilities of the neurons.

The thermal energy is equal to the electric potential energy, i.e.,

RT = VTF (1)

where VT is the membrane potential, T is the temperature; R is
universal gas constant, F is Faraday’s constant.

By (1), we have

VT =
RT

F
(2)
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Electrical Properties of Neurons
Capacitor of a neuron

Figure 3: The capacitor: relation between the amount of charge and the
voltage.

CmV = Q (3)

Taking the time derivative of (3) yields

Cm
dV

dt
=

dQ

dt
(4)
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Electrical Properties of Neurons
Resistance of a Neuron

According to the Ohm’s law, the voltage deviation can be written by

∆V = IeRm(V ) (5)

where Ie is the injected current (from outside), Rm is the resistance,
and ∆V is the voltage deviation.

The conductance is defined by the reciprocal of the resistance

gi(V ) =
1

Rm(V )
(6)
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Electrical Properties of Neurons
Equilibrium and Reversal Potentials

The channels are heterogeneous.

Negative membrane potentials attract positive ions into the neuron and
repel negative ions. In addition, ions diffuse through channels because
the ion concentrations differ inside and outside the neuron.

By the Boltzmann distribution, the ratio of the active enough ions who

can finish the energy conversion is e
zE
VT under the temperature T . In a

balance case, we have

[outside] = [inside]e
zE
VT (7)

E =
VT

z
ln

(
[outside]

[inside]

)
(8)
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Electrical Properties of Neurons
Equilibrium and Reversal Potentials

ions equilibrium

K+ -90∼-70 mV

Ca2+ 150mV

Na+ 50mV

Table 1: Equilibrium of various ions.

V < E: Ka+ will go from outside to inside to decrease the
membrane potential

V > E: Na+ and Ca2+ will go from outside to inside to decrease
the membrane potential.
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Single-Compartment Model
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Figure 4: The equivalent circuit for a one-compartment neuron model.

Define cm = Cm
A be the capacitor in the unit area. By the Kirchhoff

law, we have

cm
dV

dt
= −im +

Ie
A

(9)

Zitao Chen (GDUT) Neuroelectronics HYKE Seminar 10 / 25



Single-Compartment Model
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Figure 5: The equivalent circuit for a one-compartment neuron model.

im =
∑
i

gi(V − Ei) + ḡL(V − EL))

dV (t)

dt
= − 1

cm

(∑
i

gi + ḡL

)
V +

1

cm

(
Ie
A

−
∑
i

giEi − ḡLEL

)
(10)
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The 2nd Model: Integrate-and-Fire Model

A neuron will fire an action potential when V ∈ [−55,−50]. In the
following, we model the action potential.

To simplify, we let gi = 0. Then, we have

cm
dV

dt
= −ḡL(V − EL) +

Ie
A

(11)

Define rm = Rm ·A be the unit resistance in the unit area and
τm = cmrm be a time constant. Multiplying rm at both sides give

τm
dV

dt
= EL − V +RmIe (12)
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The 2nd Model: Integrate-And-Fire Model

τm
dV

dt
= EL − V +RmIe

Solving (13) yileds

V (t) = EL +RmIe + (V (0)− EL −RmIe)e
− t

τm (13)

Let V (0) = Vreset and tisi be the time reach thereshold. One can
calculate t = tisi by

V (tisi) = Vth = EL +RmIe + (Vreset − EL −RmIe)e
− tisi

τm (14)

Solving (14) gives the following interspike-interval firing rate

risi =
1

tisi
=


(
τmln

(
RmIe + EL − Vreset

RmIe + EL − Vth

))−1

, RmIe > VthEL

0, RmIe ≤ Vth − EL
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The 2nd Model: Integrate-And-Fire Model
Spike-Rate Adaptation

When Ie is large enough, by the approximation ln(x+ 1) = x, one has

risi =

[
Rm

τm(Vth − Vreset)
Ie +

EL − Vth

τm(Vth − Vreset)

]
+

Ie (nA)
1 2
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Figure 6: Data fitting performance of the interspike-interval firing rate.
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The 2nd Model: Integrate-And-Fire Model
Spike-Rate Adaptation and Refractoriness

To model the spike-rate adaptation process, we add a term
−rmgsra(V − EK) in the model

τm
dV

dt
= EL − V − rmgsra(V − EK) +RmIe (15)

τsra
dgsra
dt

= −gsra (16)

where gsra(tk) = (limt→t−k
gsra(t)) + ∆gsra.
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The 2nd Model: Integrate-And-Fire Model
Spike-Rate Adaptation and Refractoriness

(a) (b)

Figure 7: Estimated state trajectories.
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The 2nd Model: Integrate-And-Fire Model
Voltage-Dependent Conductances

Most of the interesting properties arise from nonlinearities associated
with active membrane conductances gi.

gi depends on several factors

1 voltage-dependent membrane conductances

2 transmitter-dependent membrane conductances

3 Ca2+-dependent membrane conductances

Let gi(t) = ḡiPi(t) be the conductance at time t. The problem is that:
how to model the dynamics of gi(t) [or Pi(t)]?
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The 2nd Model: Integrate-And-Fire Model
Voltage-Dependent Conductances

How to model the dynamics of gi(t) [or Pi(t)]?

The voltage-dependent membrane conductances [gi(t) = gi(V (t))] are
divided into delayed-rectifier K+ conductance and fast Na+

conductance

Let n ∈ [0, 1] be the gating or activation variable. We can write

PK = nk (17)

The dynamics of n can be written by

dn

dt
= αn(V )(1− n)− βn(V )n (18)

The key elements are the opening and closing rate αn(V ) and βn(V ).
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The 2nd Model: Integrate-And-Fire Model

dn

dt
= αn(V )(1− n)− βn(V )n

Let τn(V ) and n∞(V ) be defined by

τn(V ) =
1

αn(V ) + βn(V )
(19)

n∞(V ) =
αn(V )

αn(V ) + βn(V )
(20)

We rewrite the dynamics of the n by

τn(V )
dn

dt
= n∞(V )− n (21)
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The 2nd Model: Integrate-And-Fire Model
Voltage-Dependent Conductances

There are two ways to model the opening and closing rate

1 Mechanism Model:

αn(V ) = Aαe
− qBα

kBT = Aαe
−BαV

VT , Bα < 0 (22)

βn(V ) = Aβe
−

qBβ
kBT = Aβe

−
BβV

VT (23)

2 Data Fitting Model:

αn(V ) =
0.01(V + 55)

1− e−0.1(V+55)
(24)

βn(V ) = 0.125e−0.0125(V+65) (25)
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The 2nd Model: Integrate-And-Fire Model
Voltage-Dependent Conductances
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Figure 8: Estimated state trajectories.
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The 2nd Model: Integrate-And-Fire Model
Transient Conductances

a
c
ti
v
a

ti
o

n
g

a
te

in
a

c
ti
v
a

ti
o

n
g

a
te

in
tr

a
c
e

llu
la

r
e

x
tr

a
c
e

llu
la

r

in
tr

a
c
e

llu
la

r

Figure 9: Transient Conductances.

The probability of the opening channels is

PNa = mkh (26)

where m is an activation variable and h is the probability that the ball
does not block the cannel pore.
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The 2nd Model: Integrate-And-Fire Model
Transient Conductances

We can do the same things for αm, βm, αh and βh as αn(V ) and
βn(V ).

1 Mechanism Model

αm(V ) = Āαe
− qB̄α

kBT = Āαe
− B̄αV

VT , βm(V ) = Āβe
−

qB̄β
kBT = Āβe

−
B̄βV

VT

αh(V ) = Ãαe
− qB̃α

kBT = Ãαe
− B̃αV

VT , βh(V ) = Ãβe
−

qB̃β
kBT = Ãβe

−
B̃βV

VT

2 Data Fitting Model

αm =
0.1(V + 40)

1− e−0.1(V+40)
, βm = 4e−0.0556(V+65),

αh = 0.07e−0.05(V+65), βh =
1

1 + e−0.1(V+35)
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Conclusion

1 The membrane can be modelled by the capacitor, resistance, and
the amount of active (enough) ions can be calculated by
Boltzmann distribution.

2 Single-Compartment model is the simplest model by the
Kirchhoff’s laws.

3 Integrate-and-Fire improves single-compartment in two aspects:
spike-rate adaptation, time-varying voltage-dependent
conductances.
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Thank you for your listening!
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