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Introduction

• Until now, we have talked about how our world (the ”stimulus”) interacts with our
brain (the ”response”).

• Encoding is how our brain responds to the world (with ”neural spikes”), and
decoding is how we can interpret the response of our brain to understand the
stimulus.

• Can we quantify how ”good” an encoding scheme is, or how ”close” the stimulus
and the response are related?

• Shannon’s information theory!
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Entropy: Motivation

• Consider an encoding scheme that maps each stimulus to a response (in a
probabilistic manner). How can we determine ”how informative” the scheme is?

• Basic idea 1: When a high-probability event happens, it does not give us a lot of
information (because it is likely to happen). On the other hand, when a
low-probability event happens, it gives us a lot of information.

• Information ≈ Surprise
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Designing Surprise

• For a probability distribution P, we may define how ”surprising” or ”informative” a
specific event rs is by defining a surprise function h(x) : R+ → R that maps a
probability to a ”surprise”.

• Property 1: From basic idea 1, we know that the surprise function should be a
decreasing function of x.

• Property 2: When two independent events happen, we want the surprise to be
simply added. For independent events r1 and r2,

h(P[r1]) + h(P[r2]) = h(P[r1, r2]) = h(P[r1]P[r2])

must hold, and h(xy) = h(x) + h(y) should hold in general.
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Entropy

• h(x) = − log(x) is a good candidate for illustrating surprise. We use base 2 for log
as a convention from communications theory (related to ”bits”).

• The entropy, or the quantitive measure of surprise for the probability distribution
is simply the expectation of surprise.

Definition
For a discrete probability distribution P, we define its entropy to be the
expectation of surprise

H = −
∑
r

P[r]log(P[r])
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Examples

• When the response is fixed for each stimulus, we can see that each P[r]log(P[r]) =
0 for every response. Thus, the entropy for this encoding scheme is zero (i. e. it is
not informative at all)

• When the response is fixed in a twofold manner, with r+ and r−, the entropy
becomes

H = −(1− P[r+]) log(1− P[r+])− P[r+] log(P[r+])

Jensen’s inequality and the fact that −x log(x) is concave leads to the fact that the
entropy is maximized when P[r+] = P[r−] = 1

2
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Mutual Information: Motive

• We have defined the ”concept of entropy” to quantify the total information that
the probability distribution has. Is it enough to understand how informative the
response is?

• No.

• Suppose the response is fixed in a twofold manner, and for ”any” stimulus the
neuron responds as either r+ or r− randomly. Then, the entropy is maximized, but
the response is giving ”zero” information about the stimulus!

• Entropy is the capacity of the response (how informative it can be). We need
another concept to understand how informative it is regarding to ”a particular
stimulus”.
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Mutual Information: Motive

• There could be two reasons that the response is holding information:

1) Different stimuli lead to different responses. The variety of the response due
to the variety of stimuli contributed to the total information.

2) The response may change ”even if” the stimulus is the same (noisy channel,
stochasticity, ...). The variety due to the noise in the response may contribute
to the total information

• We want to eliminate the effect of 2) and only see the effect of 1) to understand
how the response and stimulus is related.

• 1): Mutual Information, 2): Noise Entropy

• Mutual Information + Noise Entropy = Total Entropy
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Noise Entropy

• The information of the response for each stimulus is

Hs = −
∑
r

P[r|s] log(P[r|s])

• Remark: When each response is deterministic for each stimulus, Hs = 0.
• The noise entropy is simply the expectation of Hs.

Definition
For a discrete probability distribution P, stimuli s and response r, we define
the noise entropy as the expectation of Hs,

Hnoise =
∑
s

P[s]Hs = −
∑
s,r

P[s]P[r|s] log(P[r|s])
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Mutual Information

• Subtract the noise entropy from the full response entropy to obtain mutual
information.

Definition
For a discrete probability distribution P, stimuli s and response r, we define
the mutual information of s and r to be

Im = H − Hnoise = −
∑
r

P[r] log(P[r]) +
∑
s,r

P[s]P[r|s] log(P[r|s])

• Using P[r] =
∑

s P[s]P[r|s] and simplifying leads to

Im =
∑
s,r

P[s]P[r|s] log(P[r|s]
P[r]

) =
∑
s,r

P[r, s] log(
P[r, s]
P[r]P[s]

)
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Mutual Information: Intuitions and remarks

• We can see that

Im =
∑
s,r

P[r, s] log(
P[r, s]
P[r]P[s]

) =
∑
s,r

P[r, s](− log(P[r]P[s]) + log(P[r, s]))

The term −
∑

s,r P[r, s] log(P[r]P[s]) gives the amount of information ”when the
response and stimulus are independent”, and the term −

∑
s,r P[r, s] log(P[r, s])

gives the amount of information of the current joint distribution. The discrepancy
between the two is happening as r and s are related, and subtracting the two leads
to mutual information.

• We can also understand Im as the KL divergence

DKL(P,Q) =
∑
r

P[r] log(
P[r]
Q[r]

)

between the distribution P[r, s] and P[r]P[s].
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Mutual Information: Intuitions and remarks

• Im ≤ −
∑

s P[s] log(P[s]), Im ≤ −
∑

r P[r] log(P[r]), and 0 ≤ Im
• Im is symmetric with respect to stimulus and response.

• When the response and stimulus is totally independent, Im = 0. On the other hand,
when the response is deterministic, Im = −

∑
s P[s] log(P[s]), becoming maximal.
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Entropy and mutual information for continuous variables

• Consider the probability density function of the response, p[r].

• The difference between the continuous case and the discrete case is that when
the variables become continuous, we cannot consider the probability of ”each
event”. Rather, we should consider the probability of ”each interval”.

• When the resolution of the response is ∆r, we may write the entropy as

H = −
∑
r

p[r]∆r log(p[r]∆r) = −
∑
r

p[r] log(p[r])∆r − log(∆r)

• As ∆r → 0, the entropy diverges!
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Entropy and mutual information for continuous variables

• For continuous case, we can only obtain the entropy up to an additive constant.
We write

lim
∆r→0

H + log(∆r) = −
∫
drp[r] log(p[r])

where log∆r is best thought of as a limit on the resolution.

• However, when the two entropies are subtracted, we can obtain the exact value.

• As mutual information is the subtraction between the full entropy and the noise
entropy, it is exactly determined as the following integral,

Im =

∫
ds

∫
drp[s]p[r|s] log(p[r|s]

p[r]
)
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Information and entropy maximization: motives and objectives

• ”Are neural responses maximizing mutual information?”

• To answer the question, we need both experimental results and theoretical
calculations that gives us the optimal response.

• Maximizing the mutual information involves two steps, maximizing the total
entropy and minimizing the noise entropy.

• In this section we study how to maximize the total entropy ”within given
constraints”, and later on discuss the effect of noise entropy.

• Possible constraints: maximal firing rate, average firing rate, variance of firing rate,
...
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Entropy maximization: Single Neuron, maximal firing rate

• Constraint: Maximal firing rate rmax ,
∫ rmax
0 drp[r] = 1

Problem
Maximize

−
∫ rmax

0
drp[r] log(p[r])

subject to ∫ rmax

0
drp[r] = 1

• Solution: Lagrange multipliers
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Entropy maximization: Single Neuron, maximal firing rate

The Lagrangian for the optimization problem becomes

∫ rmax

0
drp[r] log(p[r]) + λ

∫ rmax

0
drp[r] =

∫ rmax

0
dr(λp[r] + p[r] log p[r])

The critical point of x log x + λx is x = 2−λ−1 by direct calculation. Thus, for each λ,
p[r] = 2−λ−1 becomes the stationary point of the Lagrangian, and the integral, if it has
its critical value, has one when p[r] is constant.

Now, let’s show that p[r] = 1
rmax becomes the probability distribution that maximizes

the entropy. As the KL- divergence is always positive, we know

−
∫ rmax

0
drp[r] log(rmaxp[r]) ≤ 0, −

∫ rmax

0
drp[r] log(p[r]) ≤ log(rmax),

finishing the proof.
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Histogram Equalization

• Suppose each response r for stimulus s is given as r = f (s), and assume f is
monotone.

• The probability that the stimulus is in [s, s +∆s] is p[s]∆s, where the probability
that the response is in [f (s), f (s +∆s)] is p[f (s)](f (s +∆s)− f (s)).

• For optimal p[r] = 1
rmax , we see that

p[s]∆s =
f (s +∆s)− f (s)

rmax
and as ∆s → 0 we obtain

df
ds

= rmaxp[s], f (s) = rmax
∫ s

smin
p[u]du

• Intuition: The formula can be understood as a change of variables between two
probability density functions, p[r] = 1

rmax and p[s].
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Entropy Maximization in LMC
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Entropy maximization: Single Neuron, average firing rate

• Constraint: Average firing rate
∫∞
0 dr rp[r] = ravg ,

∫∞
0 dr p[r] = 1

Problem
Maximize

−
∫ rmax

0
drp[r] log(p[r])

subject to ∫ ∞

0
dr rp[r] = ravg ,

∫ ∞

0
drp[r] = 1

The Lagrangian for the optimization problem becomes∫ ∞

0
drp[r] log(p[r])+λ1

∫ ∞

0
drp[r]+λ2

∫ ∞

0
dr rp[r] =

∫ ∞

0
dr(λ1p[r]+λ2rp[r]+p[r] log p[r])
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Entropy maximization: Single Neuron, average firing rate, and more

For given λ1 and λ2, the critical point of x log x + λ1x + λ2rx becomes

x = C ∗ 2−λ1−λ2r

where C = 2
1

ln 2 . Thus, in this case, the optimal p[r] should be an exponential function.

• When there is an additional constraint on the second-order moment too, p[r] should
be an exponential function of a second-order polynomial. Thus, in this case, the
optimal p[r] should be a Gaussian.
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Entropy maximization: Population of neurons

• Optimizing each neuron does not necessarily mean that the total population of
neurons will be optimized: The relation between the neurons may decrease the
overall entropy.

• Suppose there are N neurons, and each response vector r ∈ RN , the probability
distribution of r is given as p[r]. Then, the overall entropy is given as

H = −
∫
drp[r] log(p[r])− N log(∆r)

• The entropy of a single neuron a is given as

Ha = −
∫
drp[r] log(p[ra])− log(∆r)
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Entropy maximization: Population of neurons

• We can intuitively see that when the neurons are independent, the overall
population will have the maximized entropy.

• Indeed,
H ≤

∑
a

Ha

holds, as ∑
a

Ha − H =

∫
drp[r] log(

p[r]
Πapa[ra]

) ≥ 0

as it is the KL divergence between p[r] and Πapa[ra].
• Equality holds iff p[r] = Πapa[ra], thus when all neurons are independent.
• Remark:

∑
a Ha − H is the mutual information between N neurons. Thus,

decreasing the mutual information between neurons are increasing the overall
entropy!
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Factorial codes

• For a population of neurons to have maximal entropy, we can see that they need
two conditions.
1) They should be independent.
2) Each neuron should be optimal

The encoding scheme that satisfies 1) and 2) are ”factorial codes”, as the
probability p[r] can be factorized as a multiple of p[r1], p[r2], ..., p[rN].

• In general, finding the exact factorial code is hard. We use substitute constraints
instead, such as fixing average firing rate and second moment for all neurons, or
enforcing

Qab =
∫
drp[r](ra − ⟨r⟩)(rb − ⟨r⟩) = σ2

r δab

a procedure similar to whitening in signal processing.
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Application to RGC receptive fields: Introduction

• For space-time receptive field D(x, t), the linear estimate of the response of a
neuron is given as

L(t) =
∫ ∞

0
dτ

∫
dxD(x, t)s(x, t − τ).

We wish to find the optimal D(x, t) that maximizes the overall entropy for a
population of neurons. Then, we will compare the results with experiments.

• Preliminaries

1) The space-time receptive field is seperable as Ds(x) and Dt(τ).
2) The stimulus s(x, t) is also separable as ss(x) and st(t).

Thus, the linear estimate is separable with Ls and Lt.
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Application to RGC receptive fields: Introduction

• Preliminaries (Continued...)

3) All receptive fields within the patch we are considering are equivalent, and
receptive fields with different centers can be expressed by mere translation,
i.e. the cell whose receptive field is centered at a has the linear spatial
response

Ls(a) =
∫
dxDs(x− a)ss((x))
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The Whitening Filter

• It is intractable to find the optimal population of neurons. Rather, we use the
approximate approach to enforce the correlation of different neurons to be 0 and
the correlation of identical neurons to be σ2

L .

• Thus, we want Ds that satisfies

QLL(a,b) = ⟨Ls(a)Ls(b)⟩ =
∫
dxdyDs(x− a)Ds(y− b)⟨ss(x)ss(y)⟩ = σ2

Lδ(a− b)

Remind that the stimulus is zero-averaged for trials.

• The homogeneity of stimulus implies that

⟨ss(x)ss(y)⟩ = Qss(x− y)
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The Whitening Filter

• Now, denote D̃s(κ) and Q̃ss(κ) as Fourier transforms of Ds and Qss. When we write

H(b− x) =
∫
dyDs(y− b)Qss(x− y) = Ds ∗ Qss,

we can see that∫
dxDs(x− a)H(b− x) = Ds ∗ H = QLL(a− b) = σ2

Lδ(a− b).

• As Fourier transform of convolution = Multiplication of Fourier transform,

˜Ds(κ)F(H) = σ2
L .

• As F(h(−t)) = F(h(t)),
F(H) = D̃s(κ)Q̃ss(κ)
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The Whitening Filter

• At last, we know that Qss is actually a function of |x− y|, thus Q̃ss is real. Using the
fact, we obtain the final equality

|D̃s(κ)|2Q̃ss(κ) = σ2
L .

and
|D̃s(κ)| =

σL√
Q̃ss(κ)

• Remark: The result only tells about the magnitude of Fourier transform. Thus,
there may be multiple choices of optimal spatial reception fields.

• Experiments show

Q̃ss(κ) ∝
exp(−α|κ|)
|κ|2 + |κ0|2
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Filtering input noise

• As Q̃ss(κ) ∝ exp(−α|κ|)
|κ|2+|κ0|2

and |D̃s(κ)| = σL√
Q̃ss(κ)

, for large frequencies, the amplitude

|D̃s(κ)| boosts.
• This is due to the exponential attenuation of the eye when large frequency signals
are inputted. Though the strategy maximizes entropy, it is doing it by ”amplifying
the noise”(high-frequency region) rather than ”obtaining meaningful information” -
Not a good strategy!

• To alleviate such a problem, we should have additional filtering that filters noise
before the signal is inputted to the receptive field.
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Filtering input noise

• Now, the final receptive field is

D̃s(κ) = D̃w(κ)D̃η(κ),

where D̃η(κ) is the Fourier transform of the optimal kernel that filters noise, i.e.
when input ss(x) + η(x) is given, output ss(x).

• From optimal kernel theory,

D̃η(κ) =
F(⟨(ss(x) + η(x))ss(y)⟩)

F(⟨(ss(x) + η(x))(ss(y) + η(y))⟩)
=

Q̃ss(κ)
Q̃ss(κ) + Q̃ηη(κ)

• Substitute to obtain

|D̃s(κ)| =
σL

√
Q̃ss(κ)

Q̃ss(κ) + Q̃ηη(κ)
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Temporal Processing

• The temporal receptive field is almost identical,

|D̃t(ω)| =
σL

√
Q̃ss(ω)

Q̃ss(ω) + Q̃ηη(ω)

• Here, experiments show that

Q̃ss(ω) ∝
1

ω2 + ω2
0

and the experimental results match well with theory.
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Temporal Processing: Experiments
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Temporal Processing: Experiments

4. Information Theory



Cortical Coding: Spatial and Temporal information are not independent
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Entropy and Information for Spike Trains

• For spike trains we should consider the entropy ”rate” instead of the entropy itself
because the amount of information increases as time passes. The entropy rate is
defined as the total entropy divided by the duration of the spike train noted with Ḣ.

• Consider the interspike interval t as the parameter that carries information, and
p[τ ] be the probability distribution function of the interspike interval. For a given
time interval T there are ⟨r⟩T spike intervals in expectation. As entropy is
maximized when all spike intervals are independent, we can obtain the upper
bound of the entropy rate

Ḣ ≤ −⟨r⟩
∫ ∞

0
dτp[τ ] log(p[τ ]∆τ)

• When the interspike intervals follow the Poisson distribution and are independent,
we can obtain the exact entropy rate.
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Entropy and Information for Spike Trains: Experimental Calculation

• To obtain experimental measurements of the entropy rate for spike trains, we use
a subsequence of spikes that have duration of Ts and assume each subsequences
are independent.

• We divide the time interval of length Ts into Ts
∆t bins, and encode a binary

sequence for each spike pattern - 0 when no spikes, and 1 when spikes.

• Then, for each time interval, the entropy rate becomes

Ḣ = − 1
Ts

∑
B

P[B] log(P[B])

and by experimental results, we can calculate the corresponding value.

• The assumption that each subsequences with length Ts are independent is not
true in general. Thus, we need the value of Ḣ when Ts → ∞ for true entropy rate.
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Entropy and Information for Spike Trains: Experimental Calculation

• Fortunately, when Ts → ∞, 1
Ts and the true entropy should be proportional for

large Ts. Thus, by extrapolating the curve ”Entropy rate v.s. 1
Ts ”, we can find the

true entropy rate.

• Empirical results do not show linear dependence between entropy rate and 1
Ts , as

larger Ts needs more data points to calculate the entropy rate. Thus, empirical
results show a two-phase relation between the entropy rate and 1

Ts . Interpolating
with data when Ts is not too large is meaningful.

• With the same idea, we can obtain the noise entropy rate and also the (mutual)
information rate.
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Entropy and Information for Spike Trains: Experiment
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Conclusion

• We can define the quantitative amount of information in an encoding scheme for
our brain, using Shannon’s information theory.

• Our brain tries to maximize the entropy of its response (at least that is what
experiments suggest).

• We can obtain the entropy rate of spike trains experimentally.

• Information theory can be used as a great tool to understand brain and how
”informative” each signal is.
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