Ch 5. Numerical Dynamics

Notations: Throughout the seminar, we will use the following notations.

$$
\begin{aligned}
& \mathbb{T}:=\mathbb{R} \text { or } \mathbb{Z}, \quad \mathbb{T}_{0}^{+}:=\mathbb{R}_{\geq 0} \text { or } \mathbb{Z}_{\geq 0} \\
& \left(X, d_{X}\right): \text { state space, } \quad(\Omega, \mathcal{F}, \mathbb{P}): \text { probability space. } \\
& P: \text { base space for skew product flow }(P=\Omega \text { in our textbook }) . \\
& \operatorname{dist}(A, B):=\sup _{x \in A} \inf _{y \in B} d_{X}(x, y), \quad \forall A, B \subset X
\end{aligned}
$$

Two major issues,

1. the preservation of an attractor under discretization
2. a hyperbolic neighbourhood under discretization
are considered here in the context of RODEs and the RDSs. In this seminar, I would like to cover the first topic and omit the second one.

1 Review: Random Dynamical System

Definition 1.1. A random dynamical system (θ, φ) on $\Omega \times X$ consists of a metric dynamical system $\theta: \mathbb{T} \times \Omega \rightarrow \Omega,(t, \omega) \mapsto \theta_{t}(\omega)$, such that

1. $\theta_{0}(\omega)=\omega \quad \forall \omega \in \Omega$,
2. $\theta_{t} \circ \theta_{s}=\theta_{t+s} \quad \forall t, s \in \mathbb{T}$,
3. the $\operatorname{map}(t, \omega) \mapsto \theta_{t}(\omega)$ is measurable on $\Omega \times \mathbb{T}$,
4. θ_{t} has a measure preserving property, i.e.,

$$
\mathbb{P}\left(\theta_{t}(A)\right)=\mathbb{P}(A) \quad \forall t \in \mathbb{T} \text { and } A \in \mathcal{F}
$$

and a cocycle mapping $\varphi: \mathbb{T}_{0}^{+} \times \Omega \times X \rightarrow X$ such that

1. $\varphi\left(0, \omega, x_{0}\right)=x_{0}$ for all $x_{0} \in X$ and $\omega \in \Omega$,
2. $\varphi\left(s+t, \omega, x_{0}\right)=\varphi\left(s, \theta_{t}(\omega), \varphi\left(t, \omega, x_{0}\right)\right)$ for all $x, t \in \mathbb{T}_{0}^{+}, x_{0} \in X$ and $\omega \in \Omega$,
3. $\left(t, x_{0}\right) \mapsto \varphi\left(t, \omega, x_{0}\right)$ is continuous for each $\omega \in \Omega$,
4. $\omega \mapsto \varphi\left(t, \omega, x_{0}\right)$ is \mathcal{F}-measurable for each $\left(t, x_{0}\right) \in \mathbb{T}_{0}^{+} \times X$.

Note: 1. The cocycle mapping φ can be understood in the following way: let π : $\mathbb{T}_{0}^{+} \times \Omega \times X \rightarrow \Omega \times X$ be a mapping which is given by

$$
\pi_{t}(\omega, x)=\pi(t,(\omega, x)):=\left(\theta_{t}(\omega), \varphi(t, \omega, x)\right)
$$

Then, we have

$$
\pi_{t} \circ \pi_{s}=\pi_{t+s}, \quad \forall t, s \in \mathbb{T}_{0}^{+}
$$

2. If Ω is a metric space and the 'measurable' in Definition 1.1 are modified to 'continuous', then (θ, φ) is called a skew product flow, which represents a nonautonomous dynamical system. For instance, if we have a deterministic ODE of the form

$$
\dot{p}=f(p), \quad \dot{x}=g(p, x), \quad\left(p\left(t_{0}\right), x\left(t_{0}\right)\right)=\left(p_{0}, x_{0}\right),
$$

one can write

$$
p\left(t, t_{0}, p_{0}\right)=\theta_{t-t_{0}}\left(p_{0}\right), \quad x\left(t, t_{0}, p_{0}, x_{0}\right)=\varphi\left(t-t_{0}, p_{0}, x_{0}\right) .
$$

3. Similarly, the RODE

$$
\dot{x}=-x+\cos W_{t}(\omega),
$$

where W_{t} is a two-sided Wiener process and has the explicit solution

$$
x\left(t, t_{0}, x_{0}, \omega\right)=x_{0} e^{-\left(t-t_{0}\right)}+e^{-t} \int_{t_{0}}^{t} e^{s} \cos W_{s}(\omega) d s
$$

can be interpreted as RDS, where

$$
\begin{aligned}
& \Omega:=\left\{\omega \in C_{0}(\mathbb{R}, \mathbb{R}) \mid \omega(0)=0\right\}, \\
& \theta_{t}(\omega)(\cdot):=\omega(t+\cdot)-\omega(t), \\
& \varphi\left(t, \omega, x_{0}\right):=x\left(t, 0, \omega, x_{0}\right) .
\end{aligned}
$$

(see [Kloeden-Rasmussen 2011])

In addition, it is necessary to recall the following definitions to consider the random attractor:

Definition 1.2. Let P be a nonempty set and $\phi: \mathbb{T}_{0}^{+} \times P \rightarrow P$ be a mapping satisfying the semigroup property, i.e.,

$$
\begin{equation*}
\phi\left(0, p_{0}\right)=p_{0}, \quad \phi\left(s+t, p_{0}\right)=\phi\left(s, \phi\left(t, p_{0}\right)\right), \quad \forall s, t \in \mathbb{T}_{0}^{+}, \quad \forall p_{0} \in P \tag{1}
\end{equation*}
$$

A subset D of P is called ϕ-invariant if

$$
\phi(t, D)=D, \quad \forall t \in \mathbb{T}_{0}^{+},
$$

and called ϕ-positively invariant if

$$
\phi(t, D) \subset D, \quad \forall t \in \mathbb{T}_{0}^{+} .
$$

Now, suppose we want to consider a π-invariant set for $\pi=(\theta, \varphi)$. If

$$
D=\bigcup_{p \in P}\left(\{p\} \times D_{p}\right), \quad \emptyset \subsetneq D_{p} \subset X,
$$

then D is π-invariant if

$$
\varphi\left(t, p, D_{p}\right)=D_{\theta_{t}(p)}, \quad \forall p \in P, \quad t \in \mathbb{T}_{0}^{+}
$$

and π-positively invariant if

$$
\varphi\left(t, p, D_{p}\right) \subset D_{\theta_{t}(p)}, \quad \forall p \in P, \quad t \in \mathbb{T}_{0}^{+}
$$

If (θ, φ) is a RDS, then it is reasonable to require some sort of measurability.
Definition 1.3. Let $\pi=(\theta, \varphi): \mathbb{T}_{0}^{+} \times \Omega \times X \rightarrow \Omega \times X$ be a $R D S$ and

$$
D=\bigcup_{\omega \in \Omega}\left(\{\omega\} \times D_{\omega}\right), \quad \emptyset \subsetneq D_{\omega} \subset \Omega
$$

Then, D is called a random set if it is $\mathcal{X} \times \mathcal{F}$-measurable, where \mathcal{X} is the Borel σ-algebra of X. A random set D is called a random closed set (resp. compact) if each D_{ω} is closed (resp. compact), and D said to be tempered if $\exists x_{0} \in X$ such that

$$
D_{\omega} \subset\left\{x \in X: d\left(x, x_{0}\right) \leq r(\omega)\right\} \quad \forall \omega \in \Omega
$$

where the random variable $r(\omega)$ has a sub-exponential growth:

$$
\sup _{t \in \mathbb{R}}\left\{r\left(\theta_{t}(\omega)\right) e^{-\gamma|t|}\right\}<\infty \quad \forall \gamma>0, \quad \omega \in \Omega
$$

Note: For a(n autonomous) dynamical system $\phi: \mathbb{T}_{0}^{+} \times X \rightarrow X$, a set $A \subset X$ is called an attractor if A is a nonempty compact ϕ-invariant subset of X and

$$
\lim _{t \rightarrow \infty} \operatorname{dist}(\phi(t, B), A)=0, \quad \forall B: \text { bounded. }
$$

To define an attractor for $\pi=(\theta, \varphi)$, we may use the fiber-wise distance between attractor $A \subset P \times X$ and set $\pi_{t}(D)$. For each $p \in P$, the p-fiber of $\pi_{t}(D)$ is $\varphi\left(t, \theta_{-t}(p), D_{\theta_{-t}(p)}\right)$, since

$$
\pi_{t}\left(\theta_{-t}(p), D_{\theta_{-t}(p)}\right)=\left(p, \varphi\left(t, \theta_{-t}(p), D_{\theta_{-t}(p)}\right)\right)
$$

Therefore, for each $p \in P$, we estimate

$$
\operatorname{dist}\left(\varphi\left(t, \theta_{-t}(p), D_{\theta_{-t}(p)}\right), A_{p}\right)
$$

Then, should A attract all fiber-bounded subsets of $P \times X$? For detailed analysis it is good to relax this requirement.

Definition 1.4. An attraction universe \mathcal{D} of (θ, φ) is a collection of subset of $P \times X$ with bounded p-fibers where

$$
\emptyset \subsetneq D^{\prime} \subset D, \quad D \in \mathcal{D} \quad \text { implies } \quad D^{\prime} \in \mathcal{D}
$$

Note: If (θ, φ) is a random dynamical system, the collection of all tempered random sets \mathcal{T} is an attraction universe.

Now, we are ready to define the pullback attractor.
Definition 1.5. For given $\pi:=(\theta, \varphi)$, a nonempty, fiber-compact and π-invariant set $A \subset P \times X$ is called pullback attractor with respect to an attraction universe D if

$$
\lim _{t \rightarrow \infty} \operatorname{dist}\left(\varphi\left(t, \theta_{-t}(p), D_{\theta_{-t}(p)}\right), A_{p}\right)=0, \quad \forall p \in P, \quad \forall D \in \mathcal{D} .
$$

If π is a RDS and $\mathcal{D}=\mathcal{T}$, then A is called a random attractor.

Similarly, the pullback absorbing set can be defined as follows.
Definition 1.6. For given $\pi=(\theta, \varphi)$ and an attraction universe \mathcal{D}, a nonempty, fiber-compact set $K \in \mathcal{D}$ is called pullback absorbing with respect to \mathcal{D} if

$$
\begin{gathered}
\forall D \in \mathcal{D}, \quad \forall p \in P, \quad \exists T=T(p, D)>0 \quad \text { such that } \\
\varphi\left(t, \theta_{-t}(p), D_{\theta_{-t}(p)}\right) \subset K_{p} \quad \forall t \geq T .
\end{gathered}
$$

In general, it is known that the existence of absorbing set implies the existence of attractor. The following theorem shows such a result for skew product flow (θ, φ).

Theorem 1.1. For given $\pi=(\theta, \varphi)$ and attracting universe \mathcal{D}, let K be a pullback absorbing set with respect to \mathcal{D}. Then, (θ, φ) has a pullback attractor A with respect to \mathcal{D}, where

$$
A_{p}=\bigcap_{s>0} \overline{\bigcup_{t \geq s} \varphi\left(t, \theta_{-t}(p), K_{\theta_{-t}(p)}\right)} .
$$

In addition, $A_{p} \subset K_{p}$ for all $p \in P$.

We refer Chapter 3 of the book [Kloeden-Rasmussen 2011] for readers who are interested in the proof. The proof is essentially the same when (θ, φ) is RDS. The only new thing here is to show that A is a random set. This follows from the fact that

$$
\omega \mapsto \varphi\left(t, \theta_{-t}(\omega), K_{\theta-t}(\omega)\right)
$$

is measurable for each $t \in \mathbb{T}_{0}^{+}$and the intersection and union can be taken over a countable number of times(union? without positive invariance?).

2 Discretization of Random Attractors

In Chapter 4, the existence of a random pullback attractor A with respect to \mathcal{T} was established for RDS (θ, φ) generated by the RODE

$$
\begin{equation*}
\dot{x}=\mu(x)+\zeta\left(\theta_{t}(\omega)\right) \tag{2}
\end{equation*}
$$

where $\mu \in C^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ satisfies

$$
(\mathcal{C} 1): \quad\langle\mu(x), x\rangle \leq-M\|x\|^{2}+N^{2}
$$

for some $M>0$ and $\zeta: \Omega \rightarrow \mathbb{R}^{d}$ satisfies

$$
(\mathcal{C} 2): \quad \lim _{|t| \rightarrow \infty} e^{-c|t|}\left\|\zeta\left(\theta_{t}(\omega)\right)\right\|=0
$$

for any $\omega \in \Omega$ and $c>0$.
The implicit Euler scheme with constant step size $h>0$ to (2) is given by

$$
\begin{equation*}
x_{n+1}=x_{n}+h\left[\mu\left(x_{n+1}\right)+\zeta\left(\theta_{n h}(\omega)\right)\right] \tag{3}
\end{equation*}
$$

For h sufficiently small to have $\mathrm{Id}-h \mu$ an inverse, (3) can be written as

$$
x_{n+1}=G_{h}\left(x_{n}, \theta_{n h}(\omega)\right), \quad n \in \mathbb{T}_{0}^{+}:=\mathbb{Z}_{\geq 0}
$$

Then, $\pi_{n}\left(\omega, x_{0}\right)=\left(\theta_{n h}(\omega), \psi_{h}\left(n, \omega, x_{0}\right)\right):=\left(\theta_{n h}(\omega), x_{n}\right)$ is a (discrete time) RDS on $\Omega \times \mathbb{R}^{d}$, and we have the following result.

Theorem 2.1. Suppose μ and ζ satisfy the conditions (C1) - (C2). Then, (3) has a random attractor A_{h} for sufficiently small $h>0$. Moreover, A_{h} converges to the random attractor A for $R O D E$ (2) upper semicontinuously, i.e.,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \operatorname{dist}\left(A_{h}(\omega), A(\omega)\right)=0, \quad \forall \omega \in \Omega \tag{4}
\end{equation*}
$$

Proof. As a consequence of Theorem 1.1, it is sufficient to find a random absorbing set for sufficiently small $h>0$ to show that $\left(\theta, \psi_{h}\right)$ has a random attractor. In particular,

$$
\begin{aligned}
\left\|x_{n+1}\right\|^{2} & =\left\langle x_{n+1}, x_{n}\right\rangle+h\left\langle x_{n+1}, \mu\left(x_{n+1}\right)\right\rangle+h\left\langle x_{n+1}, \zeta\left(\theta_{n h}(\omega)\right)\right\rangle \\
& \leq \frac{1}{2}\left\|x_{n+1}\right\|^{2}+\frac{1}{2}\left\|x_{n}\right\|^{2}-h M\left\|x_{n+1}\right\|^{2}+h N^{2}+\frac{1}{2} h M\left\|x_{n+1}\right\|^{2}+\frac{2 h}{M}\left\|\zeta\left(\theta_{n h}(\omega)\right)\right\|^{2}
\end{aligned}
$$

and therefore

$$
\left\|\psi_{h}\left(n+1, \omega, x_{0}\right)\right\|^{2} \leq \frac{1}{1+h M}\left\|\psi_{h}\left(n, \omega, x_{0}\right)\right\|^{2}+\frac{2 h N^{2}}{1+h M}+\frac{4 h}{M(1+h M)}\left\|\zeta\left(\theta_{n h}(\omega)\right)\right\|^{2}
$$

Writing $\lambda:=\frac{1}{1+h M}$, we have

$$
\begin{aligned}
\left\|\psi_{h}\left(n, \omega, x_{0}\right)\right\|^{2} & \leq \lambda^{n}\left\|\psi_{h}\left(0, \omega, x_{0}\right)\right\|^{2}+\left(\lambda+\cdots+\lambda^{n}\right) 2 h N^{2}+\sum_{j=1}^{n} \frac{4 h \lambda^{j}}{M} \| \zeta\left(\theta_{(n-j) h}(\omega) \|^{2}\right. \\
& \leq \lambda^{n}\left\|x_{0}\right\|^{2}+\frac{2 h N^{2} \lambda}{1-\lambda}+\frac{4 h}{M} \sum_{j=1}^{n} \lambda^{j} \| \zeta\left(\theta_{(n-j) h}(\omega) \|^{2}\right. \\
& =\lambda^{n}\left\|x_{0}\right\|^{2}+\frac{2 N^{2}}{M}+\frac{4 h}{M} \sum_{j=1}^{n} \lambda^{j} \| \zeta\left(\theta_{(n-j) h}(\omega) \|^{2}\right.
\end{aligned}
$$

and substituting $\theta_{-n h}(\omega)$ instead of ω, we have

$$
\left\|\psi_{h}\left(n, \theta_{-n h}(\omega), x_{0}\right)\right\|^{2} \leq \lambda^{n}\left\|x_{0}\right\|^{2}+\frac{2 N^{2}}{M}+\frac{4 h}{M} \sum_{j=1}^{n} \lambda^{j} \| \zeta\left(\theta_{-j h}(\omega) \|^{2}\right.
$$

Now, let K_{h} be a random set where each ω-fiber is a closed ball with center 0 and radii

$$
r_{h}(\omega):=\left(1+\frac{2 N^{2}}{M}+\frac{4 h}{M} \sum_{j=1}^{\infty} \lambda^{j} \| \zeta\left(\theta_{-j h}(\omega) \|^{2}\right)^{\frac{1}{2}}\right.
$$

Then for every $x_{0} \in D\left(\theta_{-n h}(\omega)\right)$ with $D \in \mathcal{T}$, we have

$$
\left\|\psi_{h}\left(n, \theta_{-n h}(\omega), x_{0}\right)\right\|^{2} \leq \lambda^{n} \sup _{x \in D\left(\theta_{-n h}(\omega)\right)}\|x\|^{2}+r_{h}(\omega)^{2}-1 \leq r_{h}(\omega)^{2}
$$

for sufficiently large n, since

$$
\lim _{n \rightarrow \infty} \lambda^{n} \sup _{x \in D\left(\theta_{-n h}(\omega)\right)}\|x\|^{2}=0
$$

as D is tempered and $\lambda^{n} \simeq e^{-n h M}$ for sufficiently small h. In addition, the condition $(\mathcal{C} 2)$ shows $r_{h}(\omega)$ is tempered. Therefore, the set

$$
K_{h}=\bigcup_{\omega \in \Omega}\left(\{\omega\} \times K_{h}(\omega)\right), \quad K_{h}(\omega):=\bar{B}_{r_{h}(\omega)}(0)
$$

is a random absorbing set for $\left(\theta, \psi_{h}\right)$. Therefore, by using Theorem 1.1, we have the existence of random attractor A_{h} for sufficiently small h.

For the upper semicontinuous convergence (4), suppose there exists $\varepsilon_{0}>0, \omega \in \Omega$, sequence $\left\{h_{n}\right\}_{n \geq 0}$ with $\lim _{n \rightarrow \infty} h_{n}=0$ and points $a_{n} \in A_{h_{n}}(\omega)$ such that

$$
\begin{equation*}
\operatorname{dist}\left(a_{n}, A(\omega)\right)>\varepsilon_{0} \tag{5}
\end{equation*}
$$

for all $n \geq 0$. Since A is an attractor of (2) with respect to \mathcal{T}, there is a $T_{0}>0$ such that

$$
\operatorname{dist}\left(\varphi\left(t, \theta_{-t}(\omega), K_{h}\left(\theta_{-t}(\omega)\right)\right), A(\omega)\right)<\frac{1}{4} \varepsilon_{0}, \quad \forall t \geq T_{0}
$$

The global discretization error of (3) on an interval [$0, T_{0}$] starting at $\xi \in K_{h}\left(\theta_{-T_{0}}(\omega)\right)$ is

$$
\left\|\psi_{h}\left(j, \theta_{-T_{0}}(\omega), \xi\right)-\varphi\left(j h, \theta_{-T_{0}}(\omega), \xi\right)\right\| \leq C_{T_{0}}(\omega) h^{q}, \quad 0 \leq j \leq \frac{T_{0}}{h}
$$

where q is determined by the Hölder continuity exponent of $\zeta\left(\theta_{t}(\omega)\right)$. Define

$$
h_{0}^{*}=\left[\frac{\varepsilon_{0}}{4 C_{T_{0}}(\omega)}\right]^{\frac{1}{q}}
$$

and pick $\left(h, N_{h}\right)$ such that $h \leq h_{0}^{*}, N_{h} h=T_{0}$. Then

$$
\left\|\psi_{h}\left(j, \theta_{-T_{0}}(\omega), \xi\right)-\varphi\left(j h, \theta_{-T_{0}}(\omega), \xi\right)\right\| \leq \frac{\varepsilon_{0}}{4}, \quad 0 \leq j \leq \frac{T_{0}}{h}
$$

From the invariance property of the attractor $A_{h_{n}}$, one can find

$$
\xi_{n} \in A_{h_{n}}\left(\theta_{-T_{0}}(\omega)\right) \subset K_{h}\left(\theta_{-T_{0}}(\omega)\right)
$$

such that $\psi_{h_{n}}\left(N_{h}, \theta_{-T_{0}}(\omega), \xi_{n}\right)=a_{n}$. Therefore, for each $n \geq 0$,

$$
\begin{aligned}
\operatorname{dist}\left(a_{n}, A(\omega)\right)= & \operatorname{dist}\left(\psi_{h_{n}}\left(N_{h}, \theta_{-T_{0}}(\omega), \xi_{n}\right), A(\omega)\right) \\
\leq & \left\|\psi_{h_{n}}\left(N_{h}, \theta_{-T_{0}}(\omega), \xi_{n}\right)-\varphi\left(T_{0}, \theta_{-T_{0}}(\omega), \xi_{n}\right)\right\| \\
& +\operatorname{dist}\left(\varphi\left(T_{0}, \theta_{-T_{0}}(\omega), \xi_{n}\right), A(\omega)\right) \\
< & \frac{\varepsilon_{0}}{4}+\frac{\varepsilon_{0}}{4}=\frac{\varepsilon_{0}}{2},
\end{aligned}
$$

which contradicts (5).

Last updated: October 14, 2022

