Random ODEs and Their Numerical Solution Woojoo Shim

Ch 5. Numerical Dynamics

Notations: Throughout the seminar, we will use the following notations.

T:=R or Z, TS_ = RZO or ZZO‘
(X,dx) : state space, (2, F,PP) : probability space.
P : base space for skew product flow (P = in our textbook).

dist(A, B) :=sup inf dx(z,y), V A,BC X.
z€AYEB

Two major issues,

1. the preservation of an attractor under discretization

2. a hyperbolic neighbourhood under discretization

are considered here in the context of RODEs and the RDSs. In this seminar, I would
like to cover the first topic and omit the second one.

1 Review: Random Dynamical System

Definition 1.1. A random dynamical system (0, p) on Qx X consists of a metric
dynamical system 6 : T x Q — Q, (t,w) — O,(w), such that

1. Op(w)=w YweqQ,
2. 0t09529t+5 vt,SGT,
3. the map (t,w) — 0 (w) is measurable on 2 x T,

4. 0 has a measure preserving property, i.e.,

P(0,(A)) =P(A) VteT and A€ F,

and a cocycle mapping ¢ : "]I‘(')F x 2 x X = X such that

1. ¢(0,w, ) = x0 for all zp € X and w € Q,
2. p(s+t,w,m0) = p(s,0:(w), p(t,w,x0)) for all z,t € TS, 19 € X andw € Q,
3. (t,zo) — @(t,w,x0) is continuous for each w € €,

4. wr o(t,w,x0) is F-measurable for each (t,zo) € T§ x X.

Note: 1. The cocycle mapping ¢ can be understood in the following way: let 7 :
"]I“(‘)F x 2 x X = Q x X be a mapping which is given by

m(w,x) = w(t, (w,z)) = (Oi(w), o(t,w, x)).
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Then, we have
T O Mg = Mpys, VI SE Tar.

2. If Q is a metric space and the ‘measurable’ in Definition are modified to ‘con-
tinuous’, then (6, ) is called a skew product flow, which represents a nonautonomous
dynamical system. For instance, if we have a deterministic ODE of the form

p=[fp), &=g@z), (p(to) x(to)) = (po,o),

one can write

p(t7 t07p0) = etfto (pO), :E(ta tO,pOa :EO) = Qp(t — t0, Po, mO)'

3. Similarly, the RODE
& = —x + cos Wi(w),

where W; is a two-sided Wiener process and has the explicit solution
t
z(t, to, 2o, w) = e~ F710) 4 e_t/ e’ cos Ws(w)ds,
to
can be interpreted as RDS, where
Q= {w e CH(R,R)|w(0) =0},
Or(w)(-) == w(t + ) —w(t),
o(t,w,xo) := x(t,0,w, ).

(see [Kloeden-Rasmussen 2011])

In addition, it is necessary to recall the following definitions to consider the random
attractor:

Definition 1.2. Let P be a nonempty set and ¢ : Tar X P — P be a mapping
satisfying the semigroup property, i.e.,

¢(0,p0) =po, (s+t,po) = ¢(s,6(t,p0)), Vs,teTs, VpoeP. (1)

A subset D of P is called ¢-invariant if
#(t,D) =D, YtcTg,

and called ¢-positively invariant if

¢(t,D)C D, VteTg.

Now, suppose we want to consider a m-invariant set for = = (6, ). If

D=|J{ptxDy), BCD,CX,
peEP
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then D is m-invariant if
o(t,p, Dp) = Dg,py, VpPEP, te T,
and mw-positively invariant if

@(t’p’DP)CDGt(p)v VPGP, tGTS_

If (0, ¢) is a RDS, then it is reasonable to require some sort of measurability.

Definition 1.3. Let m = (0,¢) : Tg x @ x X = Q x X be a RDS and

D=|]J({w}xD,), #CD,CR
weN

Then, D is called a random set if it is X x F-measurable, where X is the Borel
o-algebra of X. A random set D is called a random closed set (resp. compact) if
each D, is closed (resp. compact), and D said to be tempered if 3 xy € X such
that

D, Cc{zxe X :d(z,z9) <r(w)} VweQ,

where the random variable r(w) has a sub-exponential growth:

sup {r(@t(w))e“"”} <oo V>0, wen.
teR

J

Note: For a(n autonomous) dynamical system ¢ : "]I“bF x X — X, aset AC X is called
an attractor if A is a nonempty compact ¢-invariant subset of X and

1tli}m dist(¢(t, B), A) =0, V B :bounded.

To define an attractor for 7 = (0, ), we may use the fiber-wise distance between attrac-
tor A C Px X and set m (D). For each p € P, the p-fiber of m (D) is (t,0_4(p), Do_,(p))
since

T (0-¢(p), Do_,(p)) = (p, 0(t,0-t(p), Dy_,(p)))-
Therefore, for each p € P, we estimate

dist (cp(t, 6_:(p), De_t(p))7 Ap) :

Then, should A attract all fiber-bounded subsets of P x X7 For detailed analysis it is
good to relax this requirement.

Definition 1.4. An attraction universe D of (0,p) is a collection of subset of
P x X with bounded p-fibers where

0Cc D cD, DeD implies D' €D.

Note: If (6, ) is a random dynamical system, the collection of all tempered random
sets T is an attraction universe.
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Now, we are ready to define the pullback attractor.

Definition 1.5. For given w := (0, ¢), a nonempty, fiber-compact and w-invariant
set A C P x X is called pullback attractor with respect to an attraction universe

D if

lim dist (go(t,ﬁ_t(p), Do_,p))s Ap) =0, VpeP, VDeD.

—00

If m is a RDS and D =T, then A is called a random attractor.

Similarly, the pullback absorbing set can be defined as follows.

Definition 1.6. For given m = (0, ¢) and an attraction universe D, a nonempty,
fiber-compact set K € D is called pullback absorbing with respect to D if

VDeD, VpeP, 3T=T(p,D)>0 such that
o(t,0-+(p), Do_,(p)) C Kp Vt=>T.

J

In general, it is known that the existence of absorbing set implies the existence of
attractor. The following theorem shows such a result for skew product flow (6, ¢).

Theorem 1.1. For givenm = (6, ) and attracting universe D, let K be a pullback
absorbing set with respect to D. Then, (0,¢) has a pullback attractor A with
respect to D, where

Ap = ﬂ U (,0(25, H,t(p),Ka,t(p))-

s>0t>s

In addition, A, C K, for allp € P.

We refer Chapter 3 of the book [Kloeden-Rasmussen 2011] for readers who are interested
in the proof. The proof is essentially the same when (6, ¢) is RDS. The only new thing
here is to show that A is a random set. This follows from the fact that

w = p(t, 0 (w), Ke,t(w))

is measurable for each ¢t € ’H‘SL and the intersection and union can be taken over a
countable number of times(union? without positive invariance?).

2 Discretization of Random Attractors

In Chapter 4, the existence of a random pullback attractor A with respect to 7 was
established for RDS (6, ¢) generated by the RODE

& = p(x) + ((0:(w)), (2)
where p € CH(R?, R?) satisfies

(€1 (p(x),2) < —Mlz|*+ N?
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for some M > 0 and ¢ : Q — R? satisfies

(€2):  lim e M||¢(8x(w))] =0

|t|—o0
for any w € Q and ¢ > 0.
The implicit Euler scheme with constant step size h > 0 to is given by
Tnt1 = Tn + 0 [(Tnr1) + C(Onn(w))] (3)
For h sufficiently small to have Id — hu an inverse, can be written as
Tnt1 = Gp(Tpn, Opp(w)), n € Tar = ZL>o.

Then, mp(w,z0) = (Opn(w), Yr(n,w,z0)) := (Opn(w),x,) is a (discrete time) RDS on
Q x R?, and we have the following result.

Theorem 2.1. Suppose p and ¢ satisfy the conditions (C1) — (C2). Then, (3)
has a random attractor A for sufficiently small h > 0. Moreover, A}, converges
to the random attractor A for RODE upper semicontinuously, i.e.,

lim dist(4 (@), Aw)) =0, ¥ w e Q. (4)

Proof. As a consequence of Theorem it is sufficient to find a random absorbing set
for sufficiently small A > 0 to show that (6,1,) has a random attractor. In particular,

|zn41l* = (@n41, 2n) + Mns1, 1(@ns1)) + B(zni1, ((Onn(w)))

1 1 1 2h
< Slanitl? + 5 heall® = AM a1 + BN 4+ ShM a2 + 21CEwm DI

and therefore

1 2 2h N2 4h

< 1 apn (s, a0) - <Ol

2

o . L 1
Writing A := 1577, we have

. 4hN
[von (n,w, 20) > < A{[1on (0, w0, o) [|> + (A + - - - + A")2RN? +Z—||<< @)
7j=1
n 2 2 2
< A"|Jo |2 + ZA [SC
=1
— N2 + ch (@)1,

and substituting 6_,,;,(w) instead of w, we have

2N2
[ (n, 0_pn(w), z0)||* < A™||mol|® + S+ + v Z N [1¢(0—jn(w)]I.
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Now, let K} be a random set where each w-fiber is a closed ball with center 0 and radii

2
2N? | 4h - |
rn(w) = | 1+ =+ 2 D MO ()]
j=1

Then for every xzo € D(0_p,(w)) with D € T, we have

ln(n, 0—pn (@), z0) |2 < A" sup la|® +ra(w)? =1 < mp(w)?
2€D(0—nn(w))

for sufficiently large n, since

lim \" sup |z|> =0
oo J;ED(e—nh(w))

as D is tempered and \"* ~ e "M for sufficiently small h. In addition, the condition
(C2) shows rj(w) is tempered. Therefore, the set

Kp=J (fw} x Ku(w)), En(w) = B, ((0),
weN

is a random absorbing set for (0,vy,). Therefore, by using Theorem [1.1) we have the
existence of random attractor Ay for sufficiently small h.

For the upper semicontinuous convergence , suppose there exists ¢g > 0, w € €,
sequence {hy, }n>0 with lim,_,~ by, = 0 and points a,, € A, (w) such that

dist (an, A(w)) > &g (5)

for all n > 0. Since A is an attractor of with respect to T, there is a Ty > 0 such
that

dist (ot 0_s(w), Kn(0_o())), A(w)) < %go, V> T,

The global discretization error of on an interval [0, Tp] starting at & € Kp,(0_1,(w))
is

>3

||1/}h(]7 G—To(w)ag) - (p(jha 9_T0(w),§)” < CTo(w)hqv 0<5<

where ¢ is determined by the Hélder continuity exponent of ((6;(w)). Define

)

= o)

and pick (h, Nj) such that h < hg, Nph = Tp. Then

HT/Jh(L 9_T0(w),f) - (P(]h, G_TO(W),f)” < %)7 0<5<

From the invariance property of the attractor Ay, one can find

n’

&n € An, (0-1,(w)) C Kn(0-1,(w))
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such that ¢y, (Np, 0_7,(w),&n) = ay. Therefore, for each n > 0,

dist(an, A(w)) = dist(¢p,, (N, 0—1,(w), &), Alw))
S Hlbhn (Nh7 H—T() (w)7 gn) - (P(T(), 0—T0 (w)? gn)H
+ dist(¢(Th, 0-1, (W), &), A(W))
€0

€0, €
<3t

which contradicts (5)). O
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