
Random ODEs and Their Numerical Solution Woojoo Shim

Ch 5. Numerical Dynamics

Notations: Throughout the seminar, we will use the following notations.

T := R or Z, T+
0 := R≥0 or Z≥0.

(X, dX) : state space, (Ω,F ,P) : probability space.

P : base space for skew product flow (P = Ω in our textbook).

dist(A,B) := sup
x∈A

inf
y∈B

dX(x, y), ∀ A,B ⊂ X.

Two major issues,

1. the preservation of an attractor under discretization

2. a hyperbolic neighbourhood under discretization

are considered here in the context of RODEs and the RDSs. In this seminar, I would
like to cover the first topic and omit the second one.

1 Review: Random Dynamical System

Definition 1.1. A random dynamical system (θ, ϕ) on Ω×X consists of a metric
dynamical system θ : T× Ω→ Ω, (t, ω) 7→ θt(ω), such that

1. θ0(ω) = ω ∀ ω ∈ Ω,

2. θt ◦ θs = θt+s ∀ t, s ∈ T,

3. the map (t, ω) 7→ θt(ω) is measurable on Ω× T,

4. θt has a measure preserving property, i.e.,

P(θt(A)) = P(A) ∀ t ∈ T and A ∈ F ,

and a cocycle mapping ϕ : T+
0 × Ω×X → X such that

1. ϕ(0, ω, x0) = x0 for all x0 ∈ X and ω ∈ Ω,

2. ϕ(s+ t, ω, x0) = ϕ(s, θt(ω), ϕ(t, ω, x0)) for all x, t ∈ T+
0 , x0 ∈ X and ω ∈ Ω,

3. (t, x0) 7→ ϕ(t, ω, x0) is continuous for each ω ∈ Ω,

4. ω 7→ ϕ(t, ω, x0) is F-measurable for each (t, x0) ∈ T+
0 ×X.

Note: 1. The cocycle mapping ϕ can be understood in the following way: let π :
T+

0 × Ω×X → Ω×X be a mapping which is given by

πt(ω, x) = π(t, (ω, x)) := (θt(ω), ϕ(t, ω, x)).
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Then, we have
πt ◦ πs = πt+s, ∀ t, s ∈ T+

0 .

2. If Ω is a metric space and the ‘measurable’ in Definition 1.1 are modified to ‘con-
tinuous’, then (θ, ϕ) is called a skew product flow, which represents a nonautonomous
dynamical system. For instance, if we have a deterministic ODE of the form

ṗ = f(p), ẋ = g(p, x), (p(t0), x(t0)) = (p0, x0),

one can write

p(t, t0, p0) = θt−t0(p0), x(t, t0, p0, x0) = ϕ(t− t0, p0, x0).

3. Similarly, the RODE
ẋ = −x+ cosWt(ω),

where Wt is a two-sided Wiener process and has the explicit solution

x(t, t0, x0, ω) = x0e
−(t−t0) + e−t

∫ t

t0

es cosWs(ω)ds,

can be interpreted as RDS, where

Ω := {ω ∈ C0(R,R)|ω(0) = 0} ,
θt(ω)(·) := ω(t+ ·)− ω(t),

ϕ(t, ω, x0) := x(t, 0, ω, x0).

(see [Kloeden-Rasmussen 2011])

In addition, it is necessary to recall the following definitions to consider the random
attractor:

Definition 1.2. Let P be a nonempty set and φ : T+
0 × P → P be a mapping

satisfying the semigroup property, i.e.,

φ(0, p0) = p0, φ(s+ t, p0) = φ(s, φ(t, p0)), ∀ s, t ∈ T+
0 , ∀ p0 ∈ P. (1)

A subset D of P is called φ-invariant if

φ(t,D) = D, ∀ t ∈ T+
0 ,

and called φ-positively invariant if

φ(t,D) ⊂ D, ∀ t ∈ T+
0 .

Now, suppose we want to consider a π-invariant set for π = (θ, ϕ). If

D =
⋃
p∈P

({p} ×Dp) , ∅ ( Dp ⊂ X,
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then D is π-invariant if

ϕ(t, p,Dp) = Dθt(p), ∀ p ∈ P, t ∈ T+
0 ,

and π-positively invariant if

ϕ(t, p,Dp) ⊂ Dθt(p), ∀ p ∈ P, t ∈ T+
0 .

If (θ, ϕ) is a RDS, then it is reasonable to require some sort of measurability.

Definition 1.3. Let π = (θ, ϕ) : T+
0 × Ω×X → Ω×X be a RDS and

D =
⋃
ω∈Ω

({ω} ×Dω) , ∅ ( Dω ⊂ Ω.

Then, D is called a random set if it is X × F-measurable, where X is the Borel
σ-algebra of X. A random set D is called a random closed set (resp. compact) if
each Dω is closed (resp. compact), and D said to be tempered if ∃ x0 ∈ X such
that

Dω ⊂ {x ∈ X : d(x, x0) ≤ r(ω)} ∀ ω ∈ Ω,

where the random variable r(ω) has a sub-exponential growth:

sup
t∈R

{
r(θt(ω))e−γ|t|

}
<∞ ∀ γ > 0, ω ∈ Ω.

Note: For a(n autonomous) dynamical system φ : T+
0 ×X → X, a set A ⊂ X is called

an attractor if A is a nonempty compact φ-invariant subset of X and

lim
t→∞

dist(φ(t, B), A) = 0, ∀ B : bounded.

To define an attractor for π = (θ, ϕ), we may use the fiber-wise distance between attrac-
tor A ⊂ P×X and set πt(D). For each p ∈ P , the p-fiber of πt(D) is ϕ(t, θ−t(p), Dθ−t(p)),
since

πt(θ−t(p), Dθ−t(p)) = (p, ϕ(t, θ−t(p), Dθ−t(p))).

Therefore, for each p ∈ P , we estimate

dist
(
ϕ(t, θ−t(p), Dθ−t(p)), Ap

)
.

Then, should A attract all fiber-bounded subsets of P ×X? For detailed analysis it is
good to relax this requirement.

Definition 1.4. An attraction universe D of (θ, ϕ) is a collection of subset of
P ×X with bounded p-fibers where

∅ ( D′ ⊂ D, D ∈ D implies D′ ∈ D.

Note: If (θ, ϕ) is a random dynamical system, the collection of all tempered random
sets T is an attraction universe.
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Now, we are ready to define the pullback attractor.

Definition 1.5. For given π := (θ, ϕ), a nonempty, fiber-compact and π-invariant
set A ⊂ P ×X is called pullback attractor with respect to an attraction universe
D if

lim
t→∞

dist
(
ϕ(t, θ−t(p), Dθ−t(p)), Ap

)
= 0, ∀ p ∈ P, ∀ D ∈ D.

If π is a RDS and D = T , then A is called a random attractor.

Similarly, the pullback absorbing set can be defined as follows.

Definition 1.6. For given π = (θ, ϕ) and an attraction universe D, a nonempty,
fiber-compact set K ∈ D is called pullback absorbing with respect to D if

∀ D ∈ D, ∀ p ∈ P, ∃ T = T (p,D) > 0 such that

ϕ(t, θ−t(p), Dθ−t(p)) ⊂ Kp ∀ t ≥ T.

In general, it is known that the existence of absorbing set implies the existence of
attractor. The following theorem shows such a result for skew product flow (θ, ϕ).

Theorem 1.1. For given π = (θ, ϕ) and attracting universe D, let K be a pullback
absorbing set with respect to D. Then, (θ, ϕ) has a pullback attractor A with
respect to D, where

Ap =
⋂
s>0

⋃
t≥s

ϕ(t, θ−t(p),Kθ−t(p)).

In addition, Ap ⊂ Kp for all p ∈ P .

We refer Chapter 3 of the book [Kloeden-Rasmussen 2011] for readers who are interested
in the proof. The proof is essentially the same when (θ, ϕ) is RDS. The only new thing
here is to show that A is a random set. This follows from the fact that

ω 7→ ϕ(t, θ−t(ω),Kθ−t(ω))

is measurable for each t ∈ T+
0 and the intersection and union can be taken over a

countable number of times(union? without positive invariance?).

2 Discretization of Random Attractors

In Chapter 4, the existence of a random pullback attractor A with respect to T was
established for RDS (θ, ϕ) generated by the RODE

ẋ = µ(x) + ζ(θt(ω)), (2)

where µ ∈ C1(Rd,Rd) satisfies

(C1) : 〈µ(x), x〉 ≤ −M‖x‖2 +N2
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for some M > 0 and ζ : Ω→ Rd satisfies

(C2) : lim
|t|→∞

e−c|t|‖ζ(θt(ω))‖ = 0

for any ω ∈ Ω and c > 0.

The implicit Euler scheme with constant step size h > 0 to (2) is given by

xn+1 = xn + h [µ(xn+1) + ζ(θnh(ω))] (3)

For h sufficiently small to have Id− hµ an inverse, (3) can be written as

xn+1 = Gh(xn, θnh(ω)), n ∈ T+
0 := Z≥0.

Then, πn(ω, x0) = (θnh(ω), ψh(n, ω, x0)) := (θnh(ω), xn) is a (discrete time) RDS on
Ω× Rd, and we have the following result.

Theorem 2.1. Suppose µ and ζ satisfy the conditions (C1) − (C2). Then, (3)
has a random attractor Ah for sufficiently small h > 0. Moreover, Ah converges
to the random attractor A for RODE (2) upper semicontinuously, i.e.,

lim
h→0

dist(Ah(ω), A(ω)) = 0, ∀ ω ∈ Ω. (4)

Proof. As a consequence of Theorem 1.1, it is sufficient to find a random absorbing set
for sufficiently small h > 0 to show that (θ, ψh) has a random attractor. In particular,

‖xn+1‖2 = 〈xn+1, xn〉+ h〈xn+1, µ(xn+1)〉+ h〈xn+1, ζ(θnh(ω))〉

≤ 1

2
‖xn+1‖2 +

1

2
‖xn‖2 − hM‖xn+1‖2 + hN2 +

1

2
hM‖xn+1‖2 +

2h

M
‖ζ(θnh(ω))‖2,

and therefore

‖ψh(n+ 1, ω, x0)‖2 ≤ 1

1 + hM
‖ψh(n, ω, x0)‖2 +

2hN2

1 + hM
+

4h

M(1 + hM)
‖ζ(θnh(ω))‖2.

Writing λ := 1
1+hM , we have

‖ψh(n, ω, x0)‖2 ≤ λn‖ψh(0, ω, x0)‖2 + (λ+ · · ·+ λn)2hN2 +
n∑
j=1

4hλj

M
‖ζ(θ(n−j)h(ω)‖2

≤ λn‖x0‖2 +
2hN2λ

1− λ
+

4h

M

n∑
j=1

λj‖ζ(θ(n−j)h(ω)‖2

= λn‖x0‖2 +
2N2

M
+

4h

M

n∑
j=1

λj‖ζ(θ(n−j)h(ω)‖2,

and substituting θ−nh(ω) instead of ω, we have

‖ψh(n, θ−nh(ω), x0)‖2 ≤ λn‖x0‖2 +
2N2

M
+

4h

M

n∑
j=1

λj‖ζ(θ−jh(ω)‖2.
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Now, let Kh be a random set where each ω-fiber is a closed ball with center 0 and radii

rh(ω) :=

1 +
2N2

M
+

4h

M

∞∑
j=1

λj‖ζ(θ−jh(ω)‖2
 1

2

.

Then for every x0 ∈ D(θ−nh(ω)) with D ∈ T , we have

‖ψh(n, θ−nh(ω), x0)‖2 ≤ λn sup
x∈D(θ−nh(ω))

‖x‖2 + rh(ω)2 − 1 ≤ rh(ω)2,

for sufficiently large n, since

lim
n→∞

λn sup
x∈D(θ−nh(ω))

‖x‖2 = 0

as D is tempered and λn ' e−nhM for sufficiently small h. In addition, the condition
(C2) shows rh(ω) is tempered. Therefore, the set

Kh =
⋃
ω∈Ω

({ω} ×Kh(ω)) , Kh(ω) := B̄rh(ω)(0),

is a random absorbing set for (θ, ψh). Therefore, by using Theorem 1.1, we have the
existence of random attractor Ah for sufficiently small h.

For the upper semicontinuous convergence (4), suppose there exists ε0 > 0, ω ∈ Ω,
sequence {hn}n≥0 with limn→∞ hn = 0 and points an ∈ Ahn(ω) such that

dist (an, A(ω)) > ε0 (5)

for all n ≥ 0. Since A is an attractor of (2) with respect to T , there is a T0 > 0 such
that

dist (ϕ(t, θ−t(ω),Kh(θ−t(ω))), A(ω)) <
1

4
ε0, ∀ t ≥ T0.

The global discretization error of (3) on an interval [0, T0] starting at ξ ∈ Kh(θ−T0(ω))
is

‖ψh(j, θ−T0(ω), ξ)− ϕ(jh, θ−T0(ω), ξ)‖ ≤ CT0(ω)hq, 0 ≤ j ≤ T0

h
,

where q is determined by the Hölder continuity exponent of ζ(θt(ω)). Define

h∗0 =

[
ε0

4CT0(ω)

] 1
q

and pick (h,Nh) such that h ≤ h∗0, Nhh = T0. Then

‖ψh(j, θ−T0(ω), ξ)− ϕ(jh, θ−T0(ω), ξ)‖ ≤ ε0

4
, 0 ≤ j ≤ T0

h
.

From the invariance property of the attractor Ahn , one can find

ξn ∈ Ahn(θ−T0(ω)) ⊂ Kh(θ−T0(ω))
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such that ψhn(Nh, θ−T0(ω), ξn) = an. Therefore, for each n ≥ 0,

dist(an, A(ω)) = dist(ψhn(Nh, θ−T0(ω), ξn), A(ω))

≤ ‖ψhn(Nh, θ−T0(ω), ξn)− ϕ(T0, θ−T0(ω), ξn)‖
+ dist(ϕ(T0, θ−T0(ω), ξn), A(ω))

<
ε0

4
+
ε0

4
=
ε0

2
,

which contradicts (5).
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