Chapter 9 QML: Way Forward

Woojoo Shim

Korea Institute for Advanced Study

June 10, 2022

Table of Contents

Quantum Walks

QML: Way Forward

• Quantum machine learning (QML) is a **cross-disciplinary subject** made up of two of the most exciting research areas: quantum computing and classical machine learning.

Q: Classical-challenging, Quantum-easy problem?

• Microsoft, Google, IBM, Rigetti, Xanadu, D-Wave, IonQ, Intel,...

 $Figure: \ https://www.infoq.com/presentations/quantum-simulate-chemistry/$

Quantum Computing for Chemistry

• Computational chemistry would be one of the first domains to significantly benefit from the development of quantum devices.

- calculate accurate microscopic properties (e.g. energies, forces, and electrostatic multipoles of specific configurations),

- efficient sampling of potential energy surfaces (to obtain corresponding macroscopic properties)

• Hartree-Fock method: mean-field approximation of many-electron system.



Figure: https://www.infoq.com/presentations/quantum-simulate-chemistry/

OpenFermion

• OpenFermion is an open source library written largely in Python for compiling and analyzing quantum algorithms to simulate bosonic/fermionic systems, including quantum chemistry. Among other functionalities, this version features data structures and tools for obtaining and manipulating representations of bosonic/fermionic and qubit Hamiltonians.

https://github.com/quantumlib/OpenFermion

Hamiltonian Simulation (Quantum Simulation)

Goal (Hamiltonian Simulation)

Approximate $U(t) = e^{-iHt}$, where H is known but U(t) is not explicitly known.

- analog simulation: find quantum systems that "naturally" simulate Hamiltonians.

- digital simulation: decompose the time evolution into quantum gates.

Trotter Suzuki simulations

If the time independent hamiltonain H is given by a sum of elementary Hamiltonians H_j , we have

$$e^{-iHt} = \left(\prod_{j} e^{-iH_{j}\frac{t}{n}}\right)^{n} + O\left(\sum_{j,k} n \left\| \left[\frac{t}{n}H_{j}, \frac{t}{n}H_{k}\right] \right\|\right)$$

Ongoing resear	rch areas	in	QML
000000			

Quantum Walks

Quantum Image Processing (QIMP)

• Representations of the image on quantum computers: qubit lattice, Real Ket, grid qubit, quantum lattice, FRQI, MCQI, NEQR...

FRQI: encode colors(grayscale) throught angles

$$|I
angle = rac{1}{2^n}\sum_{j=0}^{2^{2n}-1}|q
angle_j\otimes |j
angle, \quad |q
angle_j = \cos heta_j|0
angle + \sin heta_j|1
angle.$$

Ø MCQI: use three channels to represent RGB.

• NEQR: gray range $0 \le f(y, x) \le 2^q - 1$.

$$|\Psi\rangle_{2} = \frac{1}{2^{n}} \sum_{Y=0}^{2^{n}-1} \sum_{X=0}^{2^{n}-1} |f(Y, X)\rangle |YX\rangle$$
Classical image
$$I = [f(y, x)]_{2^{n} \times 2^{n}}, 0 \le y, x \le 2^{n} - 1$$

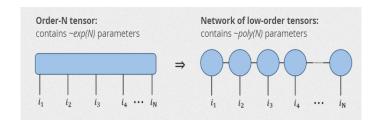
$$|\Psi\rangle_{1} = \frac{1}{2^{n}} \sum_{Y=0}^{2^{n}-1} \sum_{X=0}^{2^{n}-1} |0\rangle^{\otimes q} |YX\rangle$$
Step 1
Initial state
$$|\Psi\rangle_{0} = |0\rangle^{\otimes 2^{n+q}}$$

Ongoing research areas	in	QML
000000		

Tensor Networks

• Tensor network: factorization of huge tensor into contracted product of smaller tensors

- exponential reduction in memory needed
- exponential speedup of computations



• Google, Company X and Perimeter Institute for Theoretical Physics created the TensorNetwork library

https://www.youtube.com/watch?v=rPZFJSt3dlg

Quantum Walks	
0000	

Markov chain and classical random walks

• (Discrete-time) Markov chain: sequence of random variables X_1, \dots, X_N, \dots with the Markov property

$$\mathbb{P}(X_{n+1} = x | X_1 = x_1, \cdots, X_n = x_n) = \mathbb{P}(X_{n+1} = x | X_n = x_n).$$

• Time-homogeneous Markov chain:

$$\mathbb{P}(X_{n+1}=j|X_n=i) = \mathbb{P}(X_n=j|X_{n-1}=i) =: m_{ij}, \quad \sum_j m_{ij} = 1.$$

• Probability distribution of a location of walker at time t over a graph G can be described by a stochastic (row) vector $\mathbf{p}(t)$, where

$$\mathbf{p}(t+1) - \mathbf{p}(t) = \mathbf{p}(t)(M-I)$$

• Random walk: *G* connected, symmetric, no loop, each m_{ij} is either 0 or $\frac{1}{d_i}$. - in fact, d_i becomes independent of *i*.

Quantum Walks	
0000	

Markov chain and classical random walks

• Continuous-time analogue: denote $M - I = \frac{L}{d}$ and obtain

$$\dot{\mathbf{p}}(t) = rac{1}{d}\mathbf{p}(t)L, \quad L_{ij} = \left\{ egin{array}{ccc} 1 & (i,j) \in E \ 0 & ext{otherwise} \ , \ -d & i=j \end{array}
ight.$$

and by considering a proper time-rescaling, we have

$$\dot{\mathbf{p}}(t) = \mathbf{p}(t)L \iff \frac{dp_j(t)}{dt} = \sum_{i:(i,j)\in E} p_i(t)L_{ij}, \quad \forall j.$$

• If $G = \mathbb{Z}^k$ with each adjacent points in lattice are connected, then $L \sim \nabla^2$ and **p** becomes Gaussian.

	Quantum Walks	
	0000	
Quantum walk		

• Quantum walk: Schrödinger equation expressed in Laplacian L,

$$\mathrm{i}rac{d\psi_j(t)}{dt} = \sum_{i:(i,j)\in E} \psi_i(t) L_{ij}$$

• Eigenstates of the Laplacian operator L: for every $p \in [-\pi,\pi]$,

$$\begin{split} |p\rangle &= \sum_{x} e^{ipx} |x\rangle, \\ L|p\rangle &= \sum_{x} e^{ipx} |x\rangle + 1 + e^{ipx} |x\rangle - 1 - 2e^{ipx} |x\rangle \\ &= \sum_{x} (e^{ip} + e^{-ip} - 2)e^{ipx} |x\rangle \\ &= 2(\cos p - 1)|p\rangle. \end{split}$$

Quantum Walks	
0000	

Quantum walk

• Hence the probability distribution p(x, t) at time t, with initial $|\psi(0)\rangle = |0\rangle$ is given by:

$$\begin{aligned} |\langle x|e^{-iLt}|0\rangle|^2 &= \left|\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-2it(\cos p-1)}\langle x|p\rangle dp\right|^2 \\ &= \left|\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-2it(\cos p-1)}e^{ipx}dp\right|^2 \\ &= \left|\frac{1}{2\pi i^x}\int_{-\pi}^{\pi}e^{i(xp-2t\sin p)}dp\right|^2 \\ &= |J_x(2t)|^2. \end{aligned}$$

Ensembles: AdaBoost

- Suppose there are 100 gamblers whose winning probabilities are slightly better than random guess.
- Now, the question is " is it possible to combine 100 predictions of the 100 experts to make a better prediction?"
- Surprisingly it is possible, which is called weak learnability.
- AdaBoost is the first algorithm to implement the idea of weak learnability.
- AdaBoost increases the weights for misclassified observations and decreases the weights for correctly classified observations.

Algorithm

Start with weights
$$w_i = \frac{1}{n}, i = 1, \cdots, n$$
.

- **2** Repeat for $m = 1, \cdots, M$;
 - Fit the classifier $f_m(x) \in \{-1,1\}$ using weights w_i
 - **2** Compute err_m by

$$\operatorname{err}_m := \frac{\sum_{i=1}^n w_i I(y_i \neq f_m(x_i))}{\sum_{i=1}^n w_i}.$$

Set c_m := log(1-err_m/err_m)
 Update w_i by w_i exp(c_mI(y_i ≠ f_m(x_i))).
 Output the classifier sign(∑^M_{m=1} c_mf_m(x))

	Ensembles and QBoost
	000

QBoost

QBoost was developed by researchers at Google and D-Wave labs before QML became popular. It tries to implement an ensemble of K binary classifiers $f_k(x)$, $k = 1, \dots, K$, that are combined by a weighted sum of the form

$$f(x) = \operatorname{sgn}\left(\sum_{k=1}^{K} w_k f_k(x)\right)$$

with $x \in \mathbb{R}^N$ and $f(x) \in \{-1, 1\}$. We choose weights w_k that minimize a least-squares loss function, and add a regularization term to prevent overfitting:

$$\operatorname{argmin}_{w}\left[\frac{1}{N}\sum_{i=1}^{N}\left(\sum_{k=1}^{K}w_{k}f_{k}(x_{i})-y_{i}\right)^{2}+\lambda\|w\|_{0}\right]$$

Therefore, the optimization reduces to

$$\sum_{k,k'=1}^{K} w_k w_{k'} \left(\sum_{i=1}^{M} f_k(x_i) f_{k'}(x_i) \right) + \sum_{k=1}^{K} w_k \left(\lambda - 2 \sum_{i=1}^{M} f_k(x_i) y_i \right).$$

The coefficients serve as the interaction and field strengths of the lsing model.

감사합니다