Quantum Machine Learning Chapter 6

Ahn, Hyunjin
May 6, 2022
Research Institute of Mathematical Science, Seoul National University yagamelaito@snu.ac.kr

Table of Contents

Quantum Machine Learning Chapter 6
Partial trace and reduced density operator
Schmidt decomposition
SWAP test
Kernel methods

Table of Contents

Quantum Machine Learning Chapter 6
Partial trace and reduced density operator
Schmidt decomposition
SWAP test
Kernel methods

Partial trace and reduced density operator

We consider the composite system which is the tensor product of the states of the component physical systems, for example, in pure bipartite states, A and B, the total Hilbert space \mathcal{H} of the composite system is

$$
|\Psi\rangle_{A B}=|\Psi\rangle_{A} \otimes|\Psi\rangle_{B} \in \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} .
$$

Carrying out a measurement on a subsystem- an observable of system A with the operator M_{A} is a measurement of an observable of the composite system with the operator $M_{A} \otimes 1^{B}$. Analogously, measurements on the sub-system B is of the form $1^{A} \otimes M^{B}$.

Now, we let the pure state of the composite system

$$
|\Psi\rangle=\sum_{a, b} \Psi_{a b}\left|e_{a}\right\rangle \otimes\left|f_{b}\right\rangle,
$$

where the observable M^{A} of the subsystem A is measured.

Partial trace and reduced density operator

Then, we have

$$
\begin{aligned}
\left\langle M^{A} \otimes 1^{B}\right\rangle \psi & =\left\langle\Psi \mid M^{A} \otimes 1^{B} \Psi\right\rangle=\sum_{a_{1}, b_{1}} \sum_{a_{2}, b_{2}} \overline{\Psi_{a_{2} b_{2}}} \Psi_{a_{1} b_{1}}\left\langle e_{a_{2}} \otimes f_{b_{2}} \mid M^{A} e_{a_{1}} \otimes f_{b_{1}}\right\rangle \\
& =\sum_{a_{1}, b_{1}} \sum_{a_{2}, b_{2}} \overline{\Psi_{a_{2} b_{2}}} \Psi_{a_{1} b_{1}}\left\langle e_{a_{2}} \mid M^{A} e_{a_{1}}\right\rangle\left\langle f_{b_{2}} \mid f_{b_{1}}\right\rangle \\
& =\sum_{a_{2}, a_{1}, b} \overline{\psi_{a_{2} b}} \Psi_{a_{1} b}\left\langle e_{a_{2}} \mid M^{A} e_{a_{1}}\right\rangle .
\end{aligned}
$$

On the other hand, we can also find same expectation value by using

$$
\rho^{A}(\Psi)=\sum_{a_{1}, a_{2}, b} \overline{\Psi_{a_{2} b}} \Psi_{a_{1} b}\left|e_{a_{1}}\right\rangle\left\langle e_{a_{2}}\right|
$$

For this, we observe that $\rho^{A}(\Psi)$ is a density operator (i.e., self-adjoint, positive and has trace 1).

Partial trace and reduced density operator

Then, one has

$$
\begin{aligned}
\left\langle M^{A}\right\rangle_{\rho^{A}(\Psi)} & =\operatorname{tr}\left(\rho^{A}(\Psi) M^{A}\right)=\sum_{a}\left\langle e_{a} \mid \rho^{A}(\Psi) M^{A} e_{a}\right\rangle \\
& =\sum_{a, a_{1}, a_{2}, b} \overline{\Psi_{a_{2} b}} \Psi_{a_{1} b}\left\langle e_{a} \mid e_{a_{1}}\right\rangle\left\langle e_{a_{2}} \mid M^{A} e_{a}\right\rangle=\sum_{a_{1}, a_{2}, b} \overline{\Psi_{a_{2} b} \Psi_{a_{1} b}\left\langle e_{a_{2}} \mid M^{A} e_{a_{1}}\right\rangle} \\
& =\left\langle M^{A} \otimes 1^{B}\right\rangle_{\Psi} .
\end{aligned}
$$

Hence, $\rho^{A}(\Psi)$ describes a mixed state for the sub-system A.
Similarly, in the state $|\Psi\rangle$ of the composite system, the expectation of M^{B} for the sub-system B is as follows:

$$
\left\langle 1^{A} \otimes M^{B}\right\rangle_{\Psi}=\sum_{b_{1}, b_{2}, a} \overline{\psi_{a b_{2}}} \Psi_{a b_{1}}\left\langle f_{b_{2}} \mid M^{B} f_{b_{1}}\right\rangle=\left\langle M^{B}\right\rangle_{\rho^{B}(\Psi)},
$$

where $\rho^{B}(\Psi)=\sum_{b_{1}, b_{2}, a} \overline{\Psi_{a b_{2}}} \Psi_{a b_{1}}\left|f_{b_{1}}\right\rangle\left\langle f_{b_{2}}\right|$.

Partial trace and reduced density operator

To generalize the concepts for $\rho^{A}(\Psi)$ and $\rho^{B}(\Psi)$, we need

Lemma

Assume that \mathcal{H}^{A} and \mathcal{H}^{B} are Hilbert spaces with respect to $\operatorname{ONBs}\left\{\left|e_{a}\right\rangle\right\}$ and $\left\{\left|f_{b}\right\rangle\right\}$, respectively. Moreover, suppose $M \in L\left(\mathcal{H}^{A} \otimes \mathcal{H}^{B}\right)$ and let $M_{a_{1} b_{1}, a_{2} b_{2}}$ be the matrix of M in the $O N B\left\{\left|e_{a} \otimes f_{b}\right\rangle\right\}$ of $\mathcal{H}^{A} \otimes \mathcal{H}^{B}$ and let the operators $\operatorname{tr}^{B}(M) \in L\left(\mathcal{H}^{A}\right)$ and $\operatorname{tr}^{A}(M) \in L\left(\mathcal{H}^{B}\right)$ be given by

$$
t r^{\beta}(M)=\sum_{a_{1}, a_{2}, b} M_{a_{1} b, a_{2} b}\left|e_{a_{1}}\right\rangle\left\langle e_{a_{2}}\right|, \quad t^{A}(M)=\sum_{b_{1}, b_{2}, a} M_{b_{1} a, b_{2} a}\left|f_{b_{1}}\right\rangle\left\langle f_{b_{2}}\right| .
$$

Then, $\operatorname{tr}^{B}(M)$ and $t^{A}(M)$ do not depend on the choice of the ONBs $\left\{\left|e_{a}\right\rangle\right\}$ and $\left\{\left|f_{b}\right\rangle\right\}$ and these are the unique operators such that

$$
\begin{array}{ll}
\forall M^{A} \in L\left(\mathcal{H}^{A}\right): & \operatorname{tr}\left(M^{A} t^{B}(M)\right)=\operatorname{tr}\left(\left(M^{A} \otimes 1^{B}\right) M\right), \\
\forall M^{B} \in L\left(\mathcal{H}^{B}\right): & \operatorname{tr}\left(M^{B} \operatorname{tr}^{A}(M)\right)=\operatorname{tr}\left(\left(1^{A} \otimes M^{B}\right) M\right)
\end{array}
$$

- We call $\operatorname{tr}^{A}\left(\operatorname{tr}^{B}\right)$ the partial trace over $\mathcal{H}_{A}\left(\mathcal{H}_{B}\right)$.

Partial trace and reduced density operator

This lemma defines a density operator ρ^{A}, which describes the state of the sub-system A when observed alone.

Theorem

Let $\rho \in D\left(\mathcal{H}^{A} \otimes \mathcal{H}^{B}\right)$ be the density operator describing the state of a composite system $\mathcal{H}^{A} \otimes \mathcal{H}^{B}$. Then

$$
\rho^{A}(\rho):=t^{B}(\rho)
$$

is the uniquely determined density operator on \mathcal{H}^{A}, called by the reduced density operator, which describes the state in only the sub-system A is observed. For any observable M^{A}, it satisfies $\left\langle M^{A}\right\rangle_{\rho^{A}(\rho)}=\left\langle M^{A} \otimes 1^{B}\right\rangle_{\rho}$. Let furthermore $\left\{\left|e_{a}\right\rangle\right\}$ be an ONB in \mathcal{H}^{A} and $\left\{\left|f_{b}\right\rangle\right\}$ an ONB in \mathcal{H}^{B} as well as $\rho_{a_{1} b_{1}, a_{2} b_{2}}$ be the matrix of ρ in the $O N B\left\{\left|e_{a} \otimes f_{b}\right\rangle\right\}$ in $\mathcal{H}^{A} \otimes \mathcal{H}^{B}$. Then, the matrix $\rho^{A}(\rho)$ in the ONB $\left\{\left|e_{a}\right\rangle\right\}$ is given by

$$
\rho_{A}(\rho)_{a_{1} a_{2}}=\sum_{b} \rho_{a_{1} b, a_{2} b}
$$

Table of Contents

Quantum Machine Learning Chapter 6
Partial trace and reduced density operator
Schmidt decomposition
SWAP test
Kernel methods

Schmidt decomposition

To study the Schmidt decomposition, we again consider the pure state $|\Psi\rangle \in \mathcal{H}^{A} \otimes \mathcal{H}^{B}$ and the corresponding density operator in the composite system as follows.

$$
|\Psi\rangle=\sum_{a, b} \psi_{a b}\left|e_{a}\right\rangle \otimes\left|f_{b}\right\rangle, \quad \rho^{A}(\Psi)=\sum_{a_{1}, a_{2}, b} \overline{\psi_{a_{2} b}} \psi_{a_{1} b}\left|e_{a_{1}}\right\rangle\left\langle e_{a_{2}}\right| .
$$

Since $\rho^{A}(\Psi)$ is a self-adjoint and positive, there exists an ONB $\left\{\left|\tilde{e}_{a}\right\rangle\right\}$ in \mathcal{H}^{A} consisting of eigenvectors of $\rho^{A}(\Psi)$ such that

$$
\rho^{A}(\Psi)=\sum_{a} q_{a}\left|\tilde{e}_{a}\right\rangle\left\langle\tilde{e}_{a}\right|, \quad \text { where } \quad q_{a} \geq 0 \quad \text { are the eigenvalues. }
$$

We note that there is a unitary U on \mathcal{H}^{A} satisfying

$$
\left|\tilde{e}_{a}\right\rangle=U\left|e_{a}\right\rangle=\sum_{a_{1}}\left|e_{a_{1}}\right\rangle \underbrace{\left\langle e_{a_{1}} \mid U e_{a}\right\rangle}_{:=U_{a_{1} a}}
$$

If we set

$$
\tilde{\Psi}_{a b}:=\sum_{a_{1}} U_{a a_{1}}^{*} \psi_{a_{1} b},
$$

Schmidt decomposition

then it follows that

$$
|\Psi\rangle=\sum_{a, b} \tilde{\Psi}_{a b}\left|\tilde{e}_{a} \otimes f_{b}\right\rangle
$$

which implies

$$
\rho^{A}(\Psi)=\sum_{a_{1}, a_{2}, b} \tilde{\Psi}_{a_{1} b} \overline{\tilde{\Psi}_{a_{2} b}}\left|\tilde{e}_{a_{1}}\right\rangle\left\langle\tilde{e}_{a_{2}}\right|
$$

Thus,

$$
\sum_{b} \tilde{\Psi}_{a_{1} b} \overline{\tilde{\Psi}_{a_{2} b}}=q_{a_{2}} \delta_{a_{1} a_{2}}, \quad \text { moreover } \quad q_{a}=0 \Longleftrightarrow \tilde{\Psi}_{a b}=0, \forall b
$$

For $q_{a}>0$, we define the vectors

$$
\left|\tilde{f}_{a}\right\rangle:=\frac{1}{\sqrt{q_{a}}} \sum_{b} \tilde{\Psi}_{a b}\left|f_{b}\right\rangle \in \mathcal{H}^{B}
$$

\Longrightarrow The set of $\left|\tilde{f}_{a}\right\rangle$ is orthonormal.

Schmidt decomposition

Hence,

$$
|\Psi\rangle=\sum_{a, b} \tilde{\Psi}_{a b}\left|\tilde{e}_{a} \otimes f_{b}\right\rangle=\sum_{q_{a} \neq 0}\left|\tilde{e}_{a}\right\rangle \otimes \sum_{b} \tilde{\Psi}_{a b}\left|f_{b}\right\rangle=\sum_{q_{a} \neq 0} \sqrt{q_{a}}\left|\tilde{e}_{a} \otimes \tilde{f}_{a}\right\rangle .
$$

Here, we can drop the restriction $q_{a} \neq 0$, moreover, one can extend $\left|f_{a}\right\rangle$ to an ONB in \mathcal{H}^{B}.

Therefore, the Schmidt decomposition of $|\Psi\rangle \in \mathcal{H}^{A} \otimes \mathcal{H}^{B}$ is

$$
|\Psi\rangle=\sum_{a} \sqrt{q_{a}}\left|\tilde{e}_{a} \otimes \tilde{f}_{a}\right\rangle
$$

for the ONBs $\left|\tilde{e}_{a}\right\rangle$ and $\left|\tilde{f}_{a}\right\rangle$, where $\sqrt{q_{a}}$ is called by the Schmidt coefficient and the Schmidt rank is defined as the number of nonzero Schmidt coefficients. In particular, if the Schmidt rank is larger than 1, then the state is entangled, and if this is 1 , then the state is separate.

Table of Contents

Quantum Machine Learning Chapter 6
Partial trace and reduced density operator
Schmidt decomposition
SWAP test
Kernel methods

SWAP test

- SWAP test proposed by Buhman is very useful to measure the inner product between two quantum states.

The quantum circuit for the swap test

- This circuit gives the information $\left|\left\langle\phi_{x} \mid \phi_{y}\right\rangle\right|^{2}$ when measuring the probability of $|0\rangle \rightarrow|1\rangle$.

SWAP test

- The circuit $=$ an ancilla qubit + two qubit registers + two Hadamard gates + a controlled SWAP gate.

Question. How to calculate the operator for C-SWAP?

SWAP test

If the ancilla qubit is superposed, and the $\left|\phi_{x}\right\rangle$ and $\left|\phi_{y}\right\rangle$ states are swapped, then by a direct calculation

1. $\left|\psi_{1}\right\rangle=H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left|\phi_{x}\right\rangle\left|\phi_{y}\right\rangle$.
2. $\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle\left|\phi_{x}\right\rangle\left|\phi_{y}\right\rangle+|1\rangle\left|\phi_{y}\right\rangle\left|\phi_{x}\right\rangle\right)$.
3. $\left|\psi_{3}\right\rangle=\frac{1}{2}\left((|0\rangle+|1\rangle)\left|\phi_{x}\right\rangle\left|\phi_{y}\right\rangle+(|0\rangle-|1\rangle)\left|\phi_{y}\right\rangle\left|\phi_{x}\right\rangle\right)$.

SWAP test

Then, the probability being 1 of measuring the $|0\rangle$ is denoted by acceptance probability given by

$$
\mathcal{P}_{\text {acceptance }}=\frac{1}{2}\left(1-\left|\left\langle\phi_{x} \mid \phi_{y}\right\rangle\right|^{2}\right) .
$$

Question. How to verify this result?

Moreover, we note that

1. If $\left\langle\phi_{x} \mid \phi_{y}\right\rangle \rightarrow 0$, then $\mathcal{P}_{\text {acceptance }} \rightarrow \frac{1}{2}$.
2. If $\left|\phi_{x}\right\rangle=\left|\phi_{y}\right\rangle$, then $\mathcal{P}_{\text {acceptance }}=0$.

Table of Contents

Quantum Machine Learning Chapter 6
Partial trace and reduced density operator
Schmidt decomposition
SIN/AP test
Kernel methods

Kernel methods

- We consider a support vector machine (SVM) that finds a hyperplane (represented by normal vector w) that maximally separating vectors $\left\{v_{1}, \cdots, v_{m}\right\}$ by indicating labels $\left\{y_{1}, \cdots, y_{m}\right\}$, where $y_{i}=1$ or -1 .
- Training the SVM results in a linear prediction function

$$
f\left(v_{i}\right)=\operatorname{sign}\left(\left\langle w, v_{i}\right\rangle\right) .
$$

- Then, when
$\left\langle w, v_{i}\right\rangle>0 \Longrightarrow \quad\left\{v_{k}: y_{k}=1\right\} \quad$ live on the half of one plane.
$\left\langle w, v_{i}\right\rangle<0 \Longrightarrow\left\{v_{k}: y_{k}=-1\right\}$ live on the half of the other plane.

Kernel methods

- Although, we did not define what space the vectors v, w live in, such space should have an associated inner product.
- In the Hilbert space, we take into account the following two algorithms for the SVM method.

1. Define the database $\left\{x_{k}\right\}$ to be a set of d-dimensional real vectors $\left\{x_{1}, \cdots, x_{m}\right\}=\mathcal{X} \subset \mathbb{R}^{d}$ so that we end up doing linear classification with hyperplane w and each label of x_{i} on \mathcal{X}.
2. Define the database $\left\{\phi_{k}\right\}$ to be a set of p-dimensional real vectors $\left\{\phi_{1}, \cdots, \phi_{m}\right\}=\Phi \subset \mathbb{C}^{p}$ so that we end up doing linear classification with hyperplane w^{\prime} and each label of ϕ_{i} on Φ.

Kernel methods

- Then, we can consider a connection between the first algorithm and the second algorithm by using

$$
\phi_{i}:=\phi\left(x_{i}\right) .
$$

s.t. $\phi: \mathbb{R}^{d} \rightarrow \mathbb{C}^{p}$ is a feature map (Recall the feature map in Chapter 5).

- Unfortunately, ϕ is not always linear. Thus, the second algorithm is a nonlinear version of the first algorithm.
- Therefore,

$$
f^{\prime}\left(x_{i}\right)=\operatorname{sign}\left(\left\langle w^{\prime}, \phi\left(x_{i}\right)\right\rangle\right)
$$

needs a decision boundary that is more explicit than the corresponding decision boundary $f\left(x_{i}\right)=\operatorname{sign}\left(\left\langle w, x_{i}\right\rangle\right)$.

Kernel methods

Question 1. What is quantum kernel method?
Answer. Constructing $\phi: x_{i} \mapsto \phi\left(x_{i}\right)$, where $\phi\left(x_{i}\right)$ live in quantum state space, typically, such as

$$
\phi(x)=U(x)|0\rangle
$$

for some unitary U that we can run on a quantum circuit.

Question 2. What is quantum kernel?
Answer. When processing our input data $\left\{x_{i}\right\}$ by evaluating inner products of the form $\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle=k\left(x_{i}, x_{j}\right)$, such k is called by kernel we define with respect to our data.

That is, the quantum kernel algorithm calculates a kernel matrix (Gram matrix).

THANK YOU FOR LISTENING

