QFT LECTURE NOTE 13-16

GI-CHAN BAE

0.1. Brief review.

o Lec 1-4
(1) QM does not fit well with special relativity.
(2) QM does not allow the creation or annihilation of particles.
(This is why we study the quantum field theory)
e Lec 5-8
(1) Bosonic Fock space

B={(to,¢1, )t ¥n € HELD  [thn|* < o0}
n=0

where HE" is subspace of L?(R") which element is invariant under the change of the

sym
index number. HE" = {¢ € L*(R™), (21, ,2n) = Y(To(1), -+ Tom)) Sforall oe
Sn}
(2) Creation a'(z), annihilation operator a(z) for non-rela

e Lec 9-12

Mass shell X,,, = {p € R}3: p2 = m? p° > 0}
Measure An: [y dA\n f(p) = [ps (QdTp)gif(wp, p)
Creation af(x), annihilation operator a(x) for rela

A(f) = /X Donf*Palp),  AT(f) = /X D f (p)a (p)

m

a(p) = \/%pa(p), ' (p) = 57

Rela Hamiltonian on Fock space

Hop(pr, -+ pn) = | D05 | %01+ ,pn)
=1

Massive scalar free field (and in last lecture, the following massive scalar free field
suddenly appeared!)

d 1 , )
o(z) = / p (e—z(x,p)a(p) + e’(“’)(ﬂ(p))
R3

@2r)3 2w

Hyun-Jin Ahn computed that it is related to the Hamiltonian by very complex
computation.
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QQQ0Qaeaaeeaa@@@Q@ (Q: skip)

1 3
Hy =5 / dx ((atgo(x))? + (D)) + mz*”(””Q)

v=1

clclclclaeleeciclcclcclaele

I also wondered why the author introduced the "massive scalar free field”.
Maybe it is the most important object since it is already introduced in Lecture 1 (page 2).
First of all the scalar field is a field that gives a scalar quantity at each position z € R3.
One good example is temperature. The solution of the heat equation gives an information
of scalar quantity heat on every position and time (¢,2). Another good example is pressure.
So the massive scalar free field gives a scalar quantity at every (¢,x). In this time, the four
lectures gives the reason why we use the ”massive scalar free field”. The ”massive scalar
free field” is very useful to describe the interaction Hamiltonian effected by repulsion force.

1. LECTURE 13 INTRODUCTION TO ¢* THEORY

1.1. 13.1 Evolution of the massive scalar free field. (We start with how the massive
scalar free field evolves.)

Proposition 1.1. [Evolution of massive free field] For any x € R?, and t € R, the massive
free field satisfies

p(t,x) = e (0, x)e o0
(To prove that, we need one auxiliary lemma)
Lemma 1.1. If U is unitary operator on ‘H, extended to B, then for oll f € H,

UA(HU™! = AUF)
UAN (U™ = AN(U)

(Note that e is unitary operator. We can expect that this Lemma will be applied as
eitHA(f)e—itH — A(eitHf))
Proof. Let H = L?*(R). We choose g € H®" = L?(R")
LHS=UA(f)U g
U [ 0oV g, )
Xm

= U/X A f5(P)VR [U g1(p1) @ -+ U™ gn_1(pn—1) @ U " gn(p)]

Vit ([ G000 9o0) 99 gaa ()

m
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Note that

. (N7 _ dp 1 .. -
/Xm dAm f (p)U 1gn(p)_/RS (27T)3 2wpf (wpvp)U 1gn(wp7p)

:/ (dp : (Uf)*(wp, P)gn(wp, P)
R3

2m)? 2wy
— / A\ (U f)* () gn(p)
Xm

(Where we applied that the unitary matrix preserves the inner product.)

L.H.S:/X A (U ) (p)vV1g1(p1) @ -+ @ gn-1(Pn—1) @ gn(p)
=AUf)g
For Af,

LHS=UA(f)U g

- U/ A\ f(p)al (P)U " g(p1,- - ,pn)
X

m

1 n+1 R
=U [ d\, 8, (p)U! @ U=1gi(p;)- QU ' gni1(pn
. f(]?)\/m; P; () g1(p1) QJ(PJ) Gnt1(Pns1)
1 n+1
=U

NCES Uﬁlgl(pl)®"'f(pj)"'®U719n+1(pn+1)
j=1

n+1
1
:\/ﬁ g1(p1) @---Uf(pj) - @ gnr1(Pn+1)
j=1

= AYUf)=R.H.S

(We need assumption that p; € X,;,)
(We can extend the proof for the bosonic Fock space. ) |

(proof of Prop 13.1):

Proof. Q@QQ@QAQAQQQQQAQ Remind the notations:

A(f) = / Do f*Dalp),  AT(f) = / DA (p)a (p)

m m

00000aaaa00a0a

We can write
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So that
. . 1 . )
ethoa(p)e—thg _ ethOA(ap)e—tho
2wp
= ! A(eitHO‘sp)
v/ 2wp
! 0
= A(e"P §,)
v/ 2wp
_ 1 itpo *
= \/m/Xm dm (e 5p) a(p)
=" a(p)
Similarly @QQ proof skip@Q@@
eitHoaT (p)e—itHo — 1 eitHo T(é’p)e—itHo
2wp
— ;Af(eitHoép)
2wp
_ L aten's,)
V/ 2wp
1 0
L / Don (67" 5,)at (p)
\/ 20.)p Xom
= " a(p)

By definition of ¢,

ot %) = (7P a(p) + P (p))

(e—i(tpo—xp)a(p) 4 i’ =xp) o f (p))

. d 1 . . .
— etho/ P (ezxpa(p) +eﬂx'paT(p)) 671tH0
R3

1.2. 13.2 ¢* theory. (Now we consider the system having interaction!!)

When we consider a system of boson having interaction (repelling each other), In section
8.3, we modified the Hamiltonian

1 d2 1
T omdz? i 5 Ve, —xi)
O = =gV + 2 V@045 ; Wai — o)
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(Moreover the Hamiltonian is formally represented as the following form:)

"= /d:z:aT(z) <—211ﬂj; + V(z)) a()
+ [ [ dedyw @ - yyal @)at a(e)aty)

When the interaction W (z — y) approaches §(z — y), the last term closes to

/ dza’(z)a’ (z)a(z)a(x)

which is normal ordering of four a’s. (creation or annihilation operator).
From now on, we consider the Hamiltonian H = Hy+ gH; where g is coupling parameter

1
H; = g/dx:cp(O,x)‘l:

Q@OQaeaaaaae@@a@@@@ Applying the calculation of Ahn’s lecture, we can

represent

1 1g m?
H= /dx : <2(8tcp(0,x))2 +3 ;(GV@(O,X))Q + 7¢(O,x)2 + Z@(O,x)‘l) :
CeclcEeecEEcEerhEEeee

We want to understand how states evolve according to the Hamiltonian having interac-
tion. For that we need scattering theory.
Next three lectures consider about scattering.
Lec 14,15 - QM scattering (Non relativistic, Not allow creation, annihilation)
Lec 16 - QFT scattering

2. LETURE 14 SCATTERING

2.1. 14.1 Classical scattering. Let me explain about scattering. Scattering is just that
when we put a particle into the potential, then what is the outgoing state? Without poten-
tial, if we put a particle with (z,v) then the particle evolves following a trajectory (x+wvt,v).
Some good examples of non-quantum scattering is like this:(Draw picture) (1) Elastic col-
lision with hard sphere. (2) Attraction (3) Repulsion. We are interested in the repulsion
case. We want to define a scattering operator S. When we input a particle at (x,v) how
can we define S which gives outgoing particle at state (y,u)?

We assume that the particle is at (x’,v’) when ¢ = 0.
For t < 0 we define (x,v); := (x/,v').
If the limit exists, then we define

Q-i- (Xa V) - t—I}I—noo(X’ V)t

This operator means the (position,velocity) of particle far past.

For ¢t > 0, we define (x,v); := (x/,v’). If the limit exists, we define

Q_(x,v) = lim (x.v),
This operator means the (position,velocity) of particle far future.

For given (x,v), 4 and Q_ gives informations about the particle position and velocity at
t=0.
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We define the scattering operator as:
S:=0"'0,
Let (y,u) = S(x,v) then
Q- (y> u) =04 (X7 V)
Scattering operator S means that when we put a particle with (x,v) on the potential we
obtain scattering state S(x,v) = (y,u).
2.2. 14.2 Scattering in non-relativistic QM. Now we consider the Hamiltonian having
an interaction potential:
H = H() + gV
We define
Ut) = e HH Uo(t) = e~ Ho
(The lower indice Hy does not mean the relativistic case.)
Let |¢) is state of system at ¢ = 0. (Draw picture)
Free evolution of classical particle with initial data (x,v): (x + vt)ier
Free evolution of quantum particle with initial state |¢): (Uo(t)|9))ier
This is called "the trajectory of |¢).
For t <0,
Far past: Up(t)[t)).
Affected by H: U(—t)Uy(t)|9)

(Draw picture)
We define

Qi) = lim U(=t)Uo(1)[¢)
For ¢ > 0 we define
Q) = Jim U(~H)Un(t)|)
Scattering operator as:
S:=0"'0,

S|1) means ”trajectory of a particle in the far future if it is on the trajectory |¢) in the far
past.

If Q_Jp) = Qi |¢), (Draw picture)

(It is hard to consider Q~'. We re-define the scattering operator)

_ 0-1 T . B o
S = Q_ Q+ = tll>nolo tog@oo Uo( t)U(t to)Uo(to)

Two main problems:

e Limits may not exist in the definition of Q2 and Q_.
e We need Range(§24) C Range(2_) to define S.

(Q. Tt seems necessary surjectivity of Q_) We just define Q! by the following way:
Q71) = lim Up(~OU(B))
—00

If the second condition is not satisfied, then the particle can be ”trapped by the potential”.
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Theorem 2.1. Let H = L*(R®), with the one-particle free Hamiltonian Hy = —5=A and
Hr =V € L3(R®). Then, H = Hy +V is essesntially self-adjoint, and 0y and Q_ exist as
operators in L*(R?).

(If Hy is in L?, then we can safely use the scattering operator)

2.3. 14.3 Dyson series expansion. (Dyson series expansion is formal power series expan-
sion of the scattering operator.)
Let H = Hy+ gH;. Fix tg < 0, we define

G(t) = Up(—t)U(t — to)Uo(to)
where U(t) = e=*H and Up(t) = e~*Ho. Then
EG@) — %{eitHoe—i(t—tg)He—itHo}
= Z’HO(eitHoe—i(t—to)He—itHo) + eitHo(_,L-H)e—i(t—to)He—itHo
= i(Ho — H)G(t)
= —igH(t)G(t).

(From Section 2.6, we observed that the Hamiltonian commutes with unitary operator:)

%U(t) =—iHU(t) = —iHe H = —iU(t)H = je—tH T

G(t) = G(to) + / t 6, G"(6;)

to
t
—1ig [ d6:H1(6)G(61)
to

Once we rewrite G(61) on the time integral as

01
G(Gl) =1- Zg/ dQQHI(QQ)G(QQ)

to

We iteratively have

to tO

60 =1ig [ antiy (1 g [ deszwz)G(Hz))

t t 01
=1- ’ig/ d01H1(91) + (—ig)2/t d01/ d@QH](al)H[(ag)G(ag)

to

By iteration, one can have

n, //t /THI(Hl)HI(Hz) -H;(0,)db,, - - - db;

HME%

where (T is ordermg operator)

TH(01)Hr(02) - Hi(0n) = Hi(051)) Hr (052)) - - Hi(05(n))
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(We can simplify the integral further:)
We note that 61 >0, > --- > 0,,.
@@ taeae@a@@@@ For simple example see:

/Oldx—l //1dydx ///1dzdydm——!
/ / £1(2) fa(y)dydz = / / F1(=) fol —t)dtdz

QQO0OQQOGQAQAQQQ Taking limit, we have
S=lim lim G(¢)

t—o0 tg——0o0

or..

THI (01)H(0) - - H(6,)d6,, - - - dby

Wiki: This series diverges asymptotically, but in quantum electrodynamics (QED) at the
second order the difference from experimental data is in the order of 10719

3. LECTURE 15 BORN APPROXIMATION

3.1. 15.1 Derivation of the Born approximation. The Born approximation is first
order approximation of the scattering operator S. We just want to compute the scattering
operator by acting on a real momentum state such as |p1).

We consider a first order approximation of scattering operator S:

S =1+ (—ig)/ dtH(t) + O(g?)
—o0

where H(t) = e*Ho Hre=#Ho (I don’t know why we can write this.)

Let Hy = —5-A and H; =V € L*(R3). (Then there exists the limit of Q).

Let us compute (p2|S|p1). (The meaning is ”probability of momentum of the outgoing

particle is po when we input particle has momentum p;.”)

(PalSIpa) = (Pallipa) +(~ig) [ dt (ale™" Hye *Mlpy) +0(g?)
— —o0
=1 =II
See the definition of |p1) in Section 4.9
Ip1)(z) =€, |p1) = (27)°0°(p — p1)

So that
I = (p2|1|p1) = (p2|p1) = (27)%5° (P2 — P1)
To compute 1, (we first consider)
e py) = e P2 (27)%6% (p — pa )
= e—it\p1|2/2m|p1>
Then by an explicit computation,

17T = tp=P=Ipal®)/2m o1y 15
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Since the potential V() is in spatial space, V € L?(R3), we should compute it in spatial
space. By definition of |p1) in spatial space, we have

(palVlps) = [

dx3e= ™ P2POV (1)de = V(p2 — p1)
RS

Combining I and I, we get

<p2|5|p1> _ (27_[_)353(1)2 - pl) + (—ig)V(pz _ pl)/ dteit(\P2|2—|P1|2)/2'rn + O(gQ)

= (27)*6°(p2 — P1) + (—ig)(2m)V (P2 — P1)d((|p2[* — Ip1[*)/2m) + O(g%)
This is called Born approximation.

3.2. 15.2 What does it mean? But the momentum state |p;) = (27)36%(p — p1) is not
proper. To find the meaning of Born approximation, we instead use a proper state |i).) :

1
[Ye) = We

0@0QQ0a0e@@A@AQ We re-compute (p2|S|te) in the same way.
Cl (a2 /2¢
I' = (p2[1|¢pe) = (p2lve) = 637/126 (P2—p1)°/2

To compute 11, we take fourier transform to deal with |1).) as a spatial variable state.

. 1 2
_ ip-x —(p—p1)°/2¢
i) = [ e

II = eit(\pzlz—\pllz)/2m<p2|V|p1>

—(P—P1)2/2€

77 I can’t compute it..

~ 1 _de2?-ip1®?
1T = Cy(2m)V (p2 — Pl)%e sme
So that QQQQOQQQQQQQQQ
(Then by similar computation, we can have)

(P2|S[e) = ze” =P 4 (—ig)Co(2m)V (D2 — 1)

€

1 _Up2l2-ip11%)2

ﬁe 8m2e

A(p2) B(p2)

(The first term is not related to the potential V. The second term implies probability
effected by potential. )
Once we define

f(p2) = ((p2|S[ve))

Then f(p2) is proportional to the probability density of the momentum of the outgoing

state. (Draw a picture A, and B, and explain it.)
Email address: gcbae02@snu.ac.kr



