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Introduction

Today’s goal is to describe the asymptotic behavior of i.i.d.
random variables. There are three ways to describe this behavior.

1. Law of Large Numbers

1
n (X1 + · · ·Xn)→ µ

2. Central Limit Theorem
1√
n (X1 + · · ·+ Xn) ⇀ N(µ, σ2)

3. Large Deviation Principle

P
(∣∣∣∣1n (X1 + · · ·Xn)− µ

∣∣∣∣ > ε

)
→ e−nr(ε)
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Notations

• X1,X2, · · · ,Xn: sequence of n symbols from an alphabet
χ = {a1, a2, · · · , a|χ|}

• xn or x: sequence x1, x2, · · · , xn

but I will only use x whenever possible.
• X n: sequence X1,X2, · · · ,Xn
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Type

Definition (Type)
The type Px of a sequence x = x1, x2, · · · , xn is the relative
proportion of occurences of each symbol of χ. That is,

Px(a) = the number of a in x
n

Example
Let χ = {a, b, · · · , z}, x = ajxaxpekbgjsazz(15 letters). Then

Px(a) = 3
15 ,Px(b) = 1

15 , · · ·Px(z) = 2
15 .
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Types with Denominator n

Definition
Pn denote the set of types with denominator n.

Example
If χ = {0, 1}. Then

Pn =
{

(P(0),P(1)) :
(0

n ,
n
n

)
,

(1
n ,

n − 1
n

)
, · · · ,

(n
n ,

0
n

)}
.

Example
χ = {a, b, · · · , z}. Then Pn is the set of functions

Px : χ→
{0

n ,
1
n , · · · ,

n
n

}
with

∑
a∈χ

Px(a) = 1.
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Type class of P

Definition
If P ∈ Pn, the set of sequences of length n and type P is called
the type class of P, denoted T (P):

T (P) = {x ∈ χn : Px = P}
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Type class of P Cont.

Example
Let χ = {a, b, c} and x = aacba. Then the type Px is

Px(a) = 3
5 , Px(b) = 1

5 , Px(c) = 1
5 .

T (Px) is the set of y ∈ P5 such that Px = Py. That is,

T (Px) = {aaabc, aaacb, aabac, · · · , cbaaa} .

The number of elements in T (Px) is

|T (P)| =
(

5
3, 1, 1

)
= 5!

3!1!1! = 20.
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Main Theorem: 11.1.1

In fact, we can bound the number of types is by polynomial in n.
Theorem

|Pn| ≤ (n + 1)|χ|

Proof.
Recall that Pn is the set of functions

Px : χ→
{0

n ,
1
n , · · · ,

n
n

}
with

∑
a∈χ

Px(a) = 1.

Therefore, Pn ⊂
{

0
n ,

1
n , · · · ,

n
n

}χ
and hence

|Pn| ≤ (n + 1)|χ|.
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Remark

Remark
There are only polynomial number(≤ (n + 1)χ) of types of length
n, while there are exponential number(|χ|n) of sequence in n.

From now on, we assume that the sequence
x = X n = X1,X2, · · · ,Xn is drawn i.i.d. ∼ Q(x). Let

Qn(x) =
n∏

i=1
Q(xi )

denote the product distribution associated with Q. The next
theorem shows that the Qn can be accurately described in terms of
entropy.
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Theorem 11.1.2

Theorem
If X1,X2, · · · ,Xn are drawn i.i.d. according to Q(x), the
probability of x depends only on its type and is given by

Qn(x) = 2−n(H(Px)+D(Px||Q)))

12/43



Proof

Qn(x) :=
n∏

i=1
Q(xi )

=
∏
a∈χ

Q(a)N(a|x)

=
∏
a∈χ

Q(a)nPx(a)

=
∏
a∈χ

2nPx(a) log Q(a)

=
∏
a∈χ

2nPx(a) log Q(a)−Px(a) log Px(a)+Px(a) log Px(a)

= 2n
∑

a∈χ
(−Px(a) log Px(a)

Q(a) +Px(a) log Px(a))

= 2n(−D(Px||Q)−H(Px))
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Corollary

Corollary
If x is the type class of Q, then

Qn(x) = 2−nH(Q).

Proof.
If x ∈ T (Q), then Px = Q. Therefore,

Qn(x) = 2−n(H(Px))+D(Px||Q) = 2−n(H(Px)) = 2−nH(Q)
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Theorem

Theorem (Size of a type class T (P))
For any type P ∈ Pn,

1
(n + 1)|χ| 2

nH(P) ≤ |T (P)| ≤ 2nH(P).

Theorem (Probability of type class)
For any P ∈ Pn and any disribution Q, the probability of the type
class T (P) under Qn is 2−nD(P||Q) to first order in the exponent.
More precisely,

1
(n + 1)|χ| 2

−nD(P||Q) ≤ Qn(T (P)) ≤ 2−nD(P||Q).
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Summary

• |Pn| ≤ (n + 1)|χ|

• Qn(x) = 2−n(D(Px||Q+H(Px)))

• |T (P)| ≈ 2nH(P)

• Qn(T (P)) ≈ 2−nD(P||Q)
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Review of Chapter 3

Theorem (AEP)
If X1,X2, · · · are i.i.d. ∼ p(x), then

−1
n log p(X1,X2, · · · ,Xn)→ H(X ) in probability.

Definition (Typical Set A(n)
ε )

The typical set A(n)
ε w.r.t. p(x) is the set of sequences

(x1, x2, · · · , xn) ∈ χn with the property

2−n(H(X)+ε) ≤ p(x1, x2, · · · , xn) ≤ 2−n(H(X)−ε).
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Typical Set T ε
Q

Definition
Given an ε > 0 we can define a typical set T ε

Q of sequences for
the distribution Qn as

T ε
Q = {x : D(Px||Q) ≤ ε.}

Proposition
The probability that x is not typical is

1− Qn(T ε
Q) ≤ 2−n

(
ε−|χ| log(n+1)

n

)
,

which goes to 0 as n→∞. Hence Pr{x ∈ T ε
Q} → 1 as n→∞.
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Proof of the Proposition

1− Qn(T ε
Q) =

∑
P:D(P||Q)>ε

Qn(T (P))

≤
∑

P:D(P||Q)>ε
2−nD(P||Q)

≤
∑

P:D(P||Q)>ε
2−nε

≤ (n + 1)|χ|2−nε

= 2−n(ε−|χ| log(n+1)
n )
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Theorem 11.2.1

Theorem
Let X1,X2, · · · ,Xn be i.i.d. ∼ P(x). Then

Pr {D(Px||P) > ε} ≤ 2−n
(
ε−|χ| log(n+1)

n

)
,

and consequentely, D(Px||P)→ 0 with probability 1.

Remark
In chapter 3, we proved

Pr
{

A(n)
ε

}
> 1− ε as n→∞.

21/43



Strong Typical Set

Definition (Strong Typical Set A∗(n)
ε )

A∗(n)
ε =

x ∈ χn :
∣∣∣ 1

n N(a|x)− P(a)
∣∣∣ < ε

|χ| , if P(a) > 0
N(a|x) = 0 if P(a) = 0

 .

By the strong law of large numbers, Pr
{

A∗(n)
ε

}
→ 1 as n→∞.

The strong typical set is useful in proving stronger results such as
universal coding, rate distortion theory, and large deviation theory.
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Review of Chapter 5

In chapter 5 we studied Huffman coding. It compresses an i.i.d.
D-ary source with a known distribution p(x) with entropy

HD(X ) ≤ L∗ := min∑
D−li≤1

∑
pi li < HD(X ) + 1.

If the code is designed for incorrect distribution q(x), a penalty of
D(p||q) is incurred:

H(p) + D(p||q) ≤ L =
∑

p(x)l(x) < H(p) + D(p||q) + 1.

Thus, Huffman coding is sensitive to the assumed distribution.
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Motivation

Motivation
What compression can be achieved if the true distribution p(x) is
unknown? Is there a universal code such that H(X ) < R?

Answer
Yes! Details are provided in chapter 13.
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Fixed-rate block code of rate R

Definition
A fixed-rate block code of rate R for a source X1,X2, · · · ,Xn

which has an unknown distribution Q consists of two mappings:

• the encoder fn : χn → {1, 2, · · · , 2nR}
• the decoder φn : {1, 2, · · · , 2nR} → χn

Here R is called the rate of the code. The probability of error for
the code w.r.t. Q is

P(n)
e = Qn(x : φn(fn(x)) 6= x).
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Universal Code

Definition
A rate R block code for a source will be called universal if

1. the functions fn and φn do not depend on the distribution Q
2. P(n)

e → 0 as n→∞ if H(Q) < R.
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Theorem 11.3.1

Theorem
There exists a sequence of (2nR , n) universal source codes such
that P(n)

e → 0 for every source Q such that H(Q) < R.

Remark
Smaller R reduces the number of Qs that satisfy H(Q) < R.
That is, we have to set R large enough for meaningful results.

Remark
Compared to Huffman code, universal coding requires more code
block(R). Therefore, if you are aware of the distribution p(x), it
is desirable to use Huffman codes.
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Motivation

• Law of large numbers(LLN)
describes the result of performing the same experiment a large
number of times

• Centrl limit theorem(CLT)
establishes that their properly normalized sum of i.i.d. random
variable tends toward a normal distribution.

• Large Deviation Principle(LDP)
concerns the asymptotic behaviour of remote tails of
sequences of probability distributions

What about rate of convergence?
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Large Deviation Principle

For i.i.d. random variables X1, · · · ,Xn the rate of convergence is
exponential:

P
(∣∣∣∣1n (X1 + · · ·Xn)− µ

∣∣∣∣ > ε

)
→ e−nr(ε).

Surprisingly, in addition to the i.i.d. random variables, many
probabilistic models have been proved to follow exponential
deacy. In other words, it has been revealed that LDP is universal
property.

31/43



Miscellaneous about Srinivasa Varadhan

• A unified formalization of large deviation theory was
developed in 1966, in a paper by Varadhan.

• Varadhan won the Abel prize for
“his fundamental contributions to probability theory and in
particular for creating a unified theory of large deviation”

• Varadhan is professor. Insuk Seo’s advisor.
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Theorem 11.4.1

Theorem (Sanov’s Theorem)
Let X1,X2, · · · ,Xn be i.i.d. ∼ Q(x). Let E ⊂ P be a set of
probability distributions. Then

Qn(E ) := Qn(E ∩ Pn) ≤ (n + 1)|χ|2−nD(P∗||Q),

where
P∗ = arg min

P∈E
D(P||Q)

is the distribution in E that is closest to Q in relative entropy.

If, in addition, the set E is the closure of its interior, then

1
n log Qn(E )→ −D(P∗||Q).
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Proof (upper bound)

Qn(E ) =
∑

P∈E∩Pn

Qn(T (P))

≤
∑

P∈Pn

2−nD(P||Q)

≤
∑

P∈Pn

max
P∈E∩Pn

2−nD(P||Q)

=
∑

P∈Pn

2−n minP∈E∩Pn D(P||Q)

≤
∑

P∈Pn

2−n minP∈E D(P||Q)

=
∑

P∈Pn

2−nD(P∗||Q)

≤
∑

P∈Pn

(n + 1)|χ|2−nD(P∗||Q)
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Proof (lower bound)

Assume E is the closure of its interior. Since ⋃n Pn is dense in the
set of all distributions, we can find a sequence of distributions
Pn ∈ E ∩ Pn with the property D(Pn||Q)→ D(P∗||Q).

Qn(E ) =
∑

P∈E∩Pn

Qn(T (P))

≥ Qn(T (Pn))

≥ 1
(n + 1)|χ| 2

−nD(Pn||Q).
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Remarks

General form of Sanov’s theorem

− inf
x∈Γ̊

I(x) ≤ lim inf
ε→0

ε logµε(Γ) ≤ lim sup
ε→0

ε logµε(Γ) ≤ − inf
x∈Γ̄

I(x),

where {µε} is a family of probability measures satisfying LDP, Γ
is some measurable set, and I is a rate function.

Meaning of Sanov’s theorem
In the language of large deviations theory, Sanov’s theorem
identifies the rate function for large deviations of the empirical
measure of a sequence of i.i.d. random variables.
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Example 1: Coin

Question
What is the approximate probability that the front will come out
more than 700 times when the coin is thrown 1000 times?

Answer
From Sanov’s theorem, the probability is

P(X n ≥ 0.7) ≈ 2−nD(P∗||Q),

where P∗ is the (0.7, 0.3) distribution and Q is the (0.5, 0.5)
distribution. In this case,

D(P∗||Q) = 1− H(P∗) = 1− H(0.7)
= 1 + (0.7 log 0.7 + 0.3 log 0.3) = 0.119.

Therefore, P(X n ≥ 0.7) ≈ 2−119.
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Useful Formula

Suppose that we wish to find

Pr
{

1
n

n∑
i=1

gj(Xi ) ≥ αj , j = 1, 2, · · · , k
}
.

Then the set E is defined as

E =
{

P :
∑

a
P(a)gj(a) ≥ αj , j = 1, 2, · · · , k

}
.

To find the closest distribution in E to Q, use Lagrange
multipliers:

J(P) =
∑

x
P(x) log P(x)

Q(x) +
∑

i
λi
∑

x
P(x)gi (x) + ν

∑
x

P(x).

It follows that the closest distribution to Q is of the form

P∗(x) = Q(x)e
∑

i λi gi (x)∑
a∈χ Q(a)e

∑
i λi gi (a)

.
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Example 2. Dice

Question
Suppose that we toss a fair die n times. What is the probability
that the average of the thorws is greater than or equal to 4?

Observation
We wish to find

Pr
{

1
n

n∑
i=1

iP(i) ≥ 4
}
.

In this case, Q(x) = 1
6 , k = 1 and g(a) = a.
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Dice Cont.

P∗(x) = Q(x)e
∑

i λi gi (x)∑
a∈χ Q(a)e

∑
i λi gi (a)

= 2λx∑6
i=1 2λi

Solving numerically, we obtain λ = 0.2519,

P∗ = (0.1031, 0.1227, 0.1461, 0.1740, 0.2072, 0.2468),

and therefore D(P∗||Q) = 0.0624. Thus, from Sanov’s theorem, it
follows that

Pr
{

1
n

n∑
i=1

iP(i) ≥ 4
}
≈ 2−0.0624n.
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The End

43/43


	Method of Types
	Law of Large Numbers
	Universal Source Coding
	Large Deviation Theory
	Examples of Sanov's Theorem
	The End

