On the Use of Entanglement: Part 2

Du Linglong

Donghua University

matdl@dhu.edu.cn

January 6, 2021

Du Linglong (DHU)

臣

イロン イヨン イヨン イヨン

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm

2 Discrete Logarithm

- Definition
- Algorithm

3 Breaking Bitcoin Signatures

- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol
- Grover Search Algorithm
 - Brief ideas
 - For known number of Objects
 - For unknown number of Objects

Overview

The Abelian Hidden Subgroup Problem

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm

Discrete Logarithm

- Definition
- Algorithm

Breaking Bitcoin Signatures 3

- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

- Brief ideas
- For known number of Objects
- For unknown number of Objects

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
- 2 Discrete Logarithm
- Breaking Bitcoin Signatures
- 4 Grover Search Algorithm

Definition

Definition 6.15 Let \mathcal{H} be a subgroup of the group \mathcal{G} and let S be a finite set. We say that a function $f : \mathcal{G} \to S$ hides the subgroup \mathcal{H} if for any $g_1, g_2 \in \mathcal{G}$

$$f(g_1)=f(g_2)\Leftrightarrow g_1^{-1}g_2\in \mathcal{H}.$$

Remark

f hides $\mathcal{H} \Leftrightarrow$ it is constant on any given left coset and takes different values on distinct left cosets of \mathcal{H} , i.e.,

$$\forall g_1, g_2 \in \mathcal{G}, \quad f(g_1) = f(g_2) \Leftrightarrow g_1 \mathcal{H} = g_2 \mathcal{H}.$$

ex:6.73

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
- 2 Discrete Logarithm
- Breaking Bitcoin Signatures
- 4 Grover Search Algorithm

Definition

Definition 6.16 Let f hide the subgroup \mathcal{H} of the group \mathcal{G} . The problem to identify \mathcal{H} with the help of f is called **Hidden Subgroup Problem(HSP)**. In case \mathcal{G} is a finite abelian group it is called the **Abelian Hidden Subgroup Problem (AHSP)**.

• In the following, we consider the case: $|\mathcal{G}|$ is finite.

Under the assumption: $S_{AHSP \ Step} \ i(|\mathcal{G}|) \in poly(log_2|\mathcal{G}|)$ for $\mathcal{G} \to \infty$, i = 1, 2, 3, 4, 5. |S|=m, ordered • Input: A finite abelian group $\mathcal{G}=\{g_1,\cdots,g_{|\mathcal{G}|}\}$ and a function $f: \mathcal{G} \to S$ that hides a subgroup $\mathcal{H} < \mathcal{G}$. • Step 1: Prepare the initial state $|\Psi_0
angle = rac{1}{\sqrt{|\mathcal{G}|}}\sum_{g\in\mathcal{G}}|g
angle\otimes|0
angle\in\mathbb{H}^A\otimes\mathbb{H}^B,$ $\mathbb{H}^{A} = Span\{|g_{1}\rangle, |\cdots, g_{|\mathcal{G}|}\rangle\} \subset {}^{\P}\mathbb{H}^{\otimes n}, \quad n = \lceil \log_{2} |\mathcal{G}| \rceil,$ $\mathbb{H}^{B} = {}^{\P}\mathbb{H}^{\otimes m}, \quad m = \lceil \log_2 |S| \rceil.$

• Step 2: Apply U_f to $|\Psi_0
angle$ to produce

Image: A matrix and a matrix

3

Algorithm

In the follow steps

 \bullet Consider only sub-system $\mathbb{H}^{\mathcal{A}},$ described by the mixed state

$$\rho^{A} = tr^{B}(\rho) = tr^{B}(|\Psi_{1}\rangle\langle|\Psi_{1}) = \frac{|\mathcal{H}|}{|\mathcal{G}|} \sum_{[g]_{\mathcal{H}}|\in\mathcal{G}/\mathcal{H}} |\Psi_{[g]_{\mathcal{H}}}^{A}\rangle\langle\Psi_{[g]_{\mathcal{H}}}^{A}|,$$

quotient group
$$|\Psi_{[g]_{\mathcal{H}}}^{A}\rangle := \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{h\in[g]_{\mathcal{H}}} (|h\rangle.$$

• Define $F_{\mathcal{G}} = \frac{1}{\sqrt{|\mathcal{G}|}} \sum_{g\in\mathcal{G}} \sum_{\chi\in\hat{\mathcal{G}}} \chi(g)|\chi\rangle\langle g|$
• Define $\mathcal{H}^{\perp} := \{\chi \in \hat{\mathcal{G}} | \mathcal{H} \subset Ker(\chi)\}$
the dual group

Lemma

Lemma F.39 Let \mathcal{H} be the subgroup \mathcal{G} . Then \mathcal{H}^{\perp} is a subgroup of $\hat{\mathcal{G}}$.

Du Linglong (DHU)

i

Step 3: Perform the quantum FOURIER transform F_G to transform sub-system ℍ^A into the state

$$F_{\mathcal{G}}\rho^{A}F_{\mathcal{G}}^{*} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{G}|}} \sum_{[g]_{\mathcal{H}}|\in\mathcal{G}/\mathcal{H}} \left(\sum_{\chi\in\mathcal{H}^{\perp}}\chi(g)|\chi\rangle\right) \left(\sum_{\xi\in\mathcal{H}^{\perp}}\overline{\xi(g)}\langle\xi|\right),$$

.e., $\rho^{A} \longmapsto F_{\mathcal{G}}\rho^{A}F_{\mathcal{G}}^{*}.$

- Step 4: Observe the sub-system \mathbb{H}^A to detect a $\xi \in \mathcal{H}^{\perp}$ with certainty.
- Step 5: Repeat Steps 1-4 for $L \ge \log_2(\frac{|\mathcal{G}|}{\varepsilon|\mathcal{H}|})$ times to determine $\xi_1, \cdots, \xi_L \in \mathcal{H}^{\perp}$ and form $\bigcap_{l=1}^L Ker(\xi_l)$.
- Output: The desired $\mathcal{H} = \bigcap_{l=1}^{L} Ker(\xi_l)$, with a probability $P\{\langle \xi_i, \cdots, \xi_I \rangle = \mathcal{H}^{\perp}\} > 1 - \varepsilon.$ $\xi = \frac{|\xi|}{|\xi|}$

Corollary F.50

- 2 Discrete Logarithm• Definition
 - Algorithm
- Breaking Bitcoin Signatures
- 4 Grover Search Algorithm

Play an essential role in some advanced cryptographic protocols

Definition

Definition 6.17 Let \mathcal{G} be a group and $g, h \in \mathcal{G}$ such that there exists a $d \in \mathbb{N}_0$ such that $h = g^d$. Then d is called the **discrete logarithm** of h to base g, and this is expressed by the notation $d = d\log_g(h)$. The task to find $d = d\log_g(h)$, when only g and h are known, is called the **Discrete Logarithm Problem(DLP)**.

Remark

The **DLP** can be formulated as an AHSP, for a suitably chosen group, set and function in the **AHSP**.

- Discrete LogarithmDefinition
 - Algorithm
- Breaking Bitcoin Signatures
- 4 Grover Search Algorithm

unit element

• Given:

(i) A group \mathcal{G}_{DLP} and a element $g \in \mathcal{G}_{DLP}$ that has order N = ord(g), that is $N \in \mathbb{N}$ is the smallest number satisfying $g^N = e_{\mathcal{G}_{DLP}}$. (ii) an $h \in \mathcal{G}_{DLP}$ such that $h = g^d$, for some unknown $d \in \mathbb{N}$.

• Aim: Find
$$d = d\log_g(h)$$
.

• We choose:
$$\mathcal{G} := \mathbb{Z}_N \times \mathbb{Z}_N$$
,
 $g = ([x]_{N\mathbb{Z}}, [y]_{N\mathbb{Z}}) = (x \mod N, y \mod N) \in \mathcal{G}$.
 $S := \langle g \rangle \leq \mathcal{G}_{DLP}$.
cyclic group, $|S| = N$

• Step 1: Initial preparation:

$$\mathbb{H}^{\mathcal{A}} = Span\{|u\rangle \otimes |v\rangle|u, v \in \{0, \cdots, N-1\}\},\$$

choose

$$f: \mathcal{G} \to S$$
$$([x]_{N\mathbb{Z}}, [y]_{N\mathbb{Z}}) \longmapsto h^{x}g^{y},$$

i.e.,
$$f([x]_{N\mathbb{Z}}, [y]_{N\mathbb{Z}}) = (g^d)^x g^y = g^{dx+y} \in \langle g \rangle.$$

 $\mathcal{H} = \{([u]_{N\mathbb{Z}}, [-du]_{N\mathbb{Z}}) | [u]_{N\mathbb{Z}} \in \mathbb{Z}_N\} \leq \mathcal{G}.$
ex 6.75

A 1

3

Algorithm

• Step 2: Fourier transform $F_{\mathcal{G}}$ to transform sub-system \mathbb{H}^{A} into $F_{\mathcal{G}}\rho^{A}F_{\mathcal{G}}^{*}$, i.e., $\rho^{A} \longmapsto F_{\mathcal{G}}\rho^{A}F_{\mathcal{G}}^{*}$, $\rho^{A} = \frac{|\mathcal{H}|}{|\mathcal{G}|} \sum_{[g]_{\mathcal{H}} \mid f \in \mathcal{G}/\mathcal{H}} |\Psi_{[g]_{\mathcal{H}}}^{A}\rangle \langle \Psi_{[g]_{\mathcal{H}}}^{A}|,$

$$\begin{split} |\Psi^{A}_{[g]_{\mathcal{H}}}\rangle &:= \frac{1}{\sqrt{N}}\sum_{[u]_{N\mathbb{Z}}\in\mathbb{Z}_{N}}|(x+u) \text{mod } N\rangle \otimes |(y-du) \text{mod } N\rangle, \\ F_{\mathcal{G}} &= \frac{1}{N}\sum_{m,n,v,w\in\{0,\cdots,N-1\}}e^{2\pi i\frac{mv+nw}{N}}|m\rangle \otimes |n\rangle\langle v|\otimes\langle w| \end{split}$$

• Step 3: Find the state $|\xi
angle$ corresponds to a character $\xi\in\mathcal{H}^{\perp}$

$$\mathcal{H}^{\perp} = \{\chi_{dn \bmod N, n} | [n]_{N\mathbb{Z}} \in \mathbb{Z}_N\}$$

• Step 4: Find \mathcal{H} or $d = \operatorname{dlog}_g(h)$ $d = (a(dn \mod N) + b(dm \mod N)) \mod N.$

2 Discrete Logarithm

Breaking Bitcoin Signatures

• Digital Signature Algorithms (DSA) Protocol

• Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

Digital Signature Algorithm (DSA) Protocol	
Signer	Public knows
	algorithm parameters A
	verification statement v
chooses a private key k	
creates a public verification ka	ry .
by	
computing a $V = V(k, A)$	
and publishing it	verification key V
signs document by	
taking document d,	document d
computing a signature $s(d, A)$	
and publishing it	signature s
	and can verify by
	checking the verification statement $v(s, d, V, A) = \text{TRUE}?$

イロト イヨト イヨト イヨト

3

2 Discrete Logarithm

3 Breaking Bitcoin Signatures

• Digital Signature Algorithms (DSA) Protocol

• Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

The security of this depends on the difficulty of the calculation of k.

Remark

The computational steps to calculate $k = dlog_P(V)$ for the bitcoin ECDSA:

- The classical method: order of $O(10^{77})$.
- The quantum computer: order of O(polynomial in 256). Thus render the bitcoin signature insecure.

- 2 Discrete Logarithm
- 3 Breaking Bitcoin Signatures

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Brief ideas

250% in O (NN) Steps

- Represent the objects as quantum states, i.e., normalized vectors in a suitable Hilbert space. The vectors of the objects which we try to find span a subspace in this Hilbert space.
- Construct operators that successively transform (or rotate) a given initial state into a state which has a maximal component in the subspace of desired objects.
- Measure the rotated states, with a greater probability of detecting a state which lies in the subspace of desired objects.

Remark

This method of rotating the initial state into the solution space is also used in other quantum algorithms and has become known as **amplitude amplification**.

- 2 Discrete Logarithm
- 3 Breaking Bitcoin Signatures

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Algorithm

The number of computational steps $S_{Grover}(N) \in O(\sqrt{\frac{N}{m}})$ for $N \to \infty$.

Input: A set {0,..., N − 1} of N = 2ⁿ objects
 A subset S(solution set) of m ≥ 1 objects to be searched for oracle-function g : {0,..., N − 1} → {0,1} that

$$x \longmapsto g(x) := \begin{cases} 0, & \text{if } x \in S^{\perp} \\ 1, & \text{if } x \in S \end{cases}$$

Oracle \hat{U}_g via the following action on the computational basis $\hat{U}_g(|x\rangle \otimes |y\rangle) := |x\rangle \otimes |y \boxplus g(x)\rangle.$

Remark

Every number $x \in \{0, \dots, N-1\}$ can be uniquely associated with a vector in the computational basis of ${}^{\P}\mathbb{H}^{\otimes n}$.

- Step 1: Prepare the composite system in the state $|\hat{\Psi}_0|\rangle = |\Psi_0\rangle \otimes |-\rangle$ in $\mathbb{H}^{I/O} \otimes \mathbb{H}^W = {}^{\P}\mathbb{H}^{\otimes n} \otimes {}^{\P}\mathbb{H}$, $|\Psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$.
- Step2 : Apply the transform $\hat{G} = (R_{\Psi_0} \otimes \mathbf{1}) \hat{U}_g \ j_N = \lfloor \frac{\pi}{4\theta_0} \rfloor$ times to $|\hat{\Psi}_0\rangle$ in order to transform the composite system to the state $|\hat{\Psi}_{j_N}\rangle = \hat{G}^{j_N} |\hat{\Psi}_0\rangle$.
- Step3 : Observe the sub-system ℍ^{I/O} = [¶]ℍ^{⊗n} and infer from the observed state |x⟩ the value x ∈ {0, · · · , N − 1}.
- Step4 : By evaluating g(x), check if $x \in S$.
- Output : A solution $x \in S$ with the probability no less than $1 \frac{m}{N}$ (Theorem 6.30).

- 2 Discrete Logarithm
- 3 Breaking Bitcoin Signatures

- Brief ideas
- For known number of Objects
- For unknown number of Objects

The number of computational steps $S_{Grover}(N) \in O(\sqrt{N})$ for $N \to \infty$.

• Input: A set $\{0, ..., N-1\}$ of $N = 2^n$ objects A subset S of $m \ge 0$ objects to be searched for An oracle-function $g : \{0, ..., N1\} \rightarrow \{0, 1\}$

Step 1: Randomly select an x ∈ {0, · · · , N − 1} and check if x ∈ S. If TURE: Done

• If FALSE: Go to step 2.

• Step 2: Prepare the composite system in the state $|\hat{\Psi}_0|\rangle = |\Psi_0\rangle \otimes |-\rangle$ in $\mathbb{H}^{I/O} \otimes \mathbb{H}^W = {}^{\P}\mathbb{H}^{\otimes n} \otimes {}^{\P}\mathbb{H}, \ |\Psi_0|\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle.$

- Step3: Set $J := \lfloor \sqrt{N} \rfloor + 1$ and randomly select an integer $j \in \{0, \dots, J-1\}$ with equal probability $\frac{1}{J}$. Apply the transform $\hat{G} = (R_{\Psi_0} \otimes \mathbf{1})\hat{U}_g \ j$ times to $|\hat{\Psi}_0\rangle$ in order to transform the composite system to the state $|\hat{\Psi}_j\rangle = \hat{G}^j |\hat{\Psi}_0\rangle$.
- Step4 : Observe the sub-system $\mathbb{H}^{1/O} = {}^{\P}\mathbb{H}^{\otimes n}$ and read off the observed $x \in \{0, \cdots, N-1\}$.
- Step5: By evaluating g(x), check if $x \in S$.
- Output : A solution $x \in S$ with the probability no less than $\frac{1}{4}$ (Theorem 6.32).

The End

∃ →

-

• • • • • • • •

2