On the Use of Entanglement: Part 2

Du Linglong
Donghua University
matdl@dhu.edu.cn
January 6, 2021

Overview

(1) The Abelian Hidden Subgroup Problem

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
(2) Discrete Logarithm
- Definition
- Algorithm
(3) Breaking Bitcoin Signatures
- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

4 Grover Search Algorithm

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Overview

(1) The Abelian Hidden Subgroup Problem

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
(2) Discrete Logarithm
- Definition
- Algorithm
(3) Breaking Bitcoin Signatures
- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol
(4) Grover Search Algorithm
- Brief ideas
- For known number of Objects
- For unknown number of Objects
(1) The Abelian Hidden Subgroup Problem
- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
(2) Discrete Logarithm
(3) Breaking Bitcoin Signatures

4. Grover Search Algorithm

Preparation: Group theory (Ref. Appendix F)

Definition

Definition 6.15 Let \mathcal{H} be a subgroup of the group \mathcal{G} and let S be a finite set. We say that a function $f: \mathcal{G} \rightarrow S$ hides the subgroup \mathcal{H} if for any $g_{1}, g_{2} \in \mathcal{G}$

$$
f\left(g_{1}\right)=f\left(g_{2}\right) \Leftrightarrow g_{1}^{-1} g_{2} \in \mathcal{H}
$$

ex:6.73

Remark

f hides $\mathcal{H} \Leftrightarrow$ it is constant on any given left coset and takes different values on distinct left cosets of \mathcal{H}, i.e.,

$$
\forall g_{1}, g_{2} \in \mathcal{G}, \quad f\left(g_{1}\right)=f\left(g_{2}\right) \Leftrightarrow g_{1} \mathcal{H}=g_{2} \mathcal{H}
$$

(1) The Abelian Hidden Subgroup Problem

- Preparation: Group theory
- Abelian Hidden Subgroup Problem algorithm
(2) Discrete Logarithm
(3) Breaking Bitcoin Signatures

4. Grover Search Algorithm

Abelian Hidden Subgroup Problem algorithm

Definition

Definition 6.16 Let f hide the subgroup \mathcal{H} of the group \mathcal{G}. The problem to identify \mathcal{H} with the help of f is called Hidden Subgroup Problem(HSP). In case \mathcal{G} is a finite abelian group it is called the Abelian Hidden Subgroup Problem (AHSP).

- In the following, we consider the case: $|\mathcal{G}|$ is finite.

Algorithm

Under the assumption: $\mathcal{S}_{\text {AHSP Step } i}(|\mathcal{G}|) \in \operatorname{poly}\left(\log _{2}|\mathcal{G}|\right)$ for $|\mathcal{G}| \rightarrow \infty$, $i=1,2,3,4,5$.
$|S|=m$, ordered

- Input: A fivite abelian group $\mathcal{G}=\left\{g_{1}, \cdots, g_{|\mathcal{G}|}\right\}$ and a function $f: \mathcal{G} \rightarrow S$ that hides a subgroup $\mathcal{H} \leq \mathcal{G}$.
- Step 1: Prepare the initial state

$$
\begin{aligned}
\left|\Psi_{0}\right\rangle= & \frac{1}{\sqrt{|\mathcal{G}|}} \sum_{g \in \mathcal{G}}|g\rangle \otimes|0\rangle \in \mathbb{H}^{A} \otimes \mathbb{H}^{B}, \\
& \mathbb{H}^{A}=\operatorname{Span}\left\{\left|g_{1}\right\rangle,\left|\cdots, g_{|\mathcal{G}|}\right\rangle\right\} \subset \mathbb{H}^{\otimes n}, \quad n=\left\lceil\log _{2}|\mathcal{G}|\right\rceil, \\
& \mathbb{H}^{B}=\mathbb{H}^{\otimes m}, \quad m=\left\lceil\log _{2}|S|\right\rceil .
\end{aligned}
$$

Algorithm

- Step 2: Apply U_{f} to $\left|\Psi_{0}\right\rangle$ to produce

$$
\begin{aligned}
&\left|\Psi_{1}\right\rangle=U_{f}\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{|\mathcal{G}|}} \sum_{g \in \mathcal{G}}|g\rangle \otimes|\widetilde{f(g)}\rangle \in \mathbb{H}^{A} \otimes \mathbb{H}^{B}, \\
& \sqrt{U_{f}}: \mathbb{H}^{A} \otimes \mathbb{H}^{B} \rightarrow \mathbb{H}^{A} \otimes \mathbb{H}^{B} \\
&|g\rangle \otimes|y\rangle \longmapsto|g\rangle \otimes y \boxplus \widetilde{f(g)}\rangle . \\
&
\end{aligned}
$$

Algorithm

In the follow steps

- Consider only sub-system \mathbb{H}^{A}, described by the mixed state

$$
\rho^{A}=\operatorname{tr}^{B}(\rho)=\operatorname{tr}^{B}\left(\left|\Psi_{1}\right\rangle\langle | \Psi_{1}\right)=\frac{|\mathcal{H}|}{|\mathcal{G}|} \sum_{[g]_{\mathcal{H}} \mid \in \mathcal{G} / \mathcal{H}}\left|\Psi_{[g]_{\mathcal{H}}}^{A}\right\rangle\left\langle\Psi_{[g]_{\mathcal{H}}}^{A}\right|,
$$

quotient group

$$
\left|\Psi_{[g]_{\mathcal{H}}}^{A}\right\rangle:=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{h \in[g]_{\mathcal{H}}}(|h\rangle .
$$

- Define $F_{\mathcal{G}}=\frac{1}{\sqrt{|\mathcal{G}|}} \sum_{g \in \mathcal{G}} \sum_{\chi \in \hat{\mathcal{G}}} \chi(g)|\chi\rangle\langle g|$
the dual group
- Define $\mathcal{H}^{\perp}:=\{\chi \in \hat{\mathcal{G}} \mid \mathcal{H} \subset \operatorname{Ker}(\chi)\}$

Lemma

Lemma F. 39 Let \mathcal{H} be the subgroup \mathcal{G}. Then \mathcal{H}^{\perp} is a subgroup of $\hat{\mathcal{G}}$.

Algorithm

- Step 3: Perform the quantum FOURIER transform $F_{\mathcal{G}}$ to transform sub-system \mathbb{H}^{A} into the state

$$
F_{\mathcal{G}} \rho^{A} F_{\mathcal{G}}^{*}=\sqrt{\frac{|\mathcal{H}|}{|\mathcal{G}|}} \sum_{[g]_{\mathcal{H}} \mid \in \mathcal{G} / \mathcal{H}}\left(\sum_{\chi \in \mathcal{H}^{\perp}} \chi(g)|\chi\rangle\right)\left(\sum_{\xi \in \mathcal{H}^{\perp}} \overline{\xi(g)}\langle\xi|\right),
$$

i.e., $\rho^{A} \longmapsto F_{\mathcal{G}} \rho^{A} F_{\mathcal{G}}^{*}$.

Algorithm

- Step 4: Observe the sub-system \mathbb{H}^{A} to detect a $\xi \in \mathcal{H}^{\perp}$ with certainty.
- Step 5: Repeat Steps 1-4 for $L \geq \log _{2}\left(\frac{|\mathcal{G}|}{\varepsilon|\mathcal{H}|}\right)$ times to determine $\xi_{1}, \cdots, \xi_{L} \in \mathcal{H}^{\perp}$ and form $\bigcap_{l=1}^{L} \operatorname{Ker}\left(\xi_{l}\right)$.
- Output: The desired $\mathcal{H}=\bigcap_{l=1}^{L} \operatorname{Ker}\left(\xi_{l}\right)$, with a probability $P\left\{\left\langle\xi_{i}, \cdots, \xi_{L}\right\rangle=\mathcal{H}^{\perp}\right\} \geq 1-\varepsilon$.

Corollary F. 50

$$
\varepsilon=\frac{|\xi|}{2^{L}}
$$

(1) The Abelian Hidden Subgroup Problem

(2) Discrete Logarithm

- Definition
- Algorithm
(3) Breaking Bitcoin Signatures

4 Grover Search Algorithm

Definition

Play an essential role in some advanced cryptographic protocols

Definition

Definition 6.17 Let \mathcal{G} be a group and $g, h \in \mathcal{G}$ such that there exists a $d \in \mathbb{N}_{0}$ such that $h=g^{d}$.
Then d is called the discrete logarithm of h to base g, and this is expressed by the notation $d=\operatorname{dlog}_{g}(h)$.
The task to find $d=\operatorname{dlog}_{g}(h)$, when only g and h are known, is called the Discrete Logarithm Problem(DLP).

Remark

The DLP can be formulated as an AHSP, for a suitably chosen group, set and function in the AHSP.

(1) The Abelian Hidden Subgroup Problem

(2) Discrete Logarithm

- Definition
- Algorithm

(3) Breaking Bitcoin Signatures

4 Grover Search Algorithm

Algorithm

unit element

- Given:
(i) A group $\mathcal{G}_{D L P}$ and a element $g \in \mathcal{G}_{D L P}$ that has order $N=\operatorname{ord}(g)$, that is $N \in \mathbb{N}$ is the smallest number satisfying $g^{N}=e_{\mathcal{G}_{D L P}}$.
(ii) An $h \in \mathcal{G}_{D L P}$ such that $h=g^{d}$, for some unknown $d \in \mathbb{N}$.
- Aim: Find $d=\operatorname{dlog}_{g}(h)$.
- We choose: $\mathcal{G}:=\mathbb{Z}_{N} \times \mathbb{Z}_{N}$,

$$
\begin{aligned}
& g=\left([x]_{N \mathbb{Z}},[y]_{N \mathbb{Z}}\right)=(x \bmod N, y \bmod N) \in \mathcal{G} . \\
& S:=\langle g\rangle \leq \mathcal{G}_{D L P} .
\end{aligned}
$$

cyclic group, $|\mathrm{S}|=\mathrm{N}$

Algorithm

- Step 1: Initial preparation:

$$
\mathbb{H}^{A}=\operatorname{Span}\{|u\rangle \otimes|v\rangle \mid u, v \in\{0, \cdots, N-1\}\}
$$

choose

$$
\begin{gathered}
f: \mathcal{G} \rightarrow S \\
\left([x]_{N \mathbb{Z}},[y]_{N \mathbb{Z}}\right) \longmapsto h^{x} g^{y}, \\
\text { i.e., } f\left([x]_{N \mathbb{Z}},[y]_{N \mathbb{Z}}\right)=\left(g^{d}\right)^{x} g^{y}=g^{d x+y} \in\langle g\rangle . \\
\mathcal{H}=\left\{\left([u]_{N \mathbb{Z}},[-d u]_{N \mathbb{Z}}\right) \mid[u]_{N \mathbb{Z}} \in \mathbb{Z}_{N}\right\} \leq \mathcal{G} .
\end{gathered}
$$

Algorithm

- Step 2: Fourier transform $F_{\mathcal{G}}$ to transform sub-system \mathbb{H}^{A} into $F_{\mathcal{G}} \rho^{A} F_{\mathcal{G}}^{*}$, i.e., $\rho^{A} \longmapsto F_{\mathcal{G}} \rho^{A} F_{\mathcal{G}}^{*}$,

$$
\begin{gathered}
\rho^{A}=\frac{|\mathcal{H}|}{|\mathcal{G}|} \sum_{[g]_{\mathcal{H}} \mid \in \mathcal{G} / \mathcal{H}}\left|\Psi_{[g]_{\mathcal{H}}}^{A}\right\rangle\left\langle\Psi_{[g]_{\mathcal{H}}}^{A}\right|, \\
\left|\Psi_{[g]_{\mathcal{H}}}^{A}\right\rangle:=\frac{1}{\sqrt{N}} \sum_{[u]_{N \mathbb{Z}} \in \mathbb{Z}_{N}}|(x+u) \bmod N\rangle \otimes|(y-d u) \bmod N\rangle, \\
F_{\mathcal{G}}=\frac{1}{N} \sum_{m, n, v, w \in\{0, \cdots, N-1\}} e^{2 \pi i \frac{m v+n w}{N}}|m\rangle \otimes|n\rangle\langle v| \otimes\langle w|
\end{gathered}
$$

- Step 3: Find the state $|\xi\rangle$ corresponds to a character $\xi \in \mathcal{H}^{\perp}$

$$
\mathcal{H}^{\perp}=\left\{\chi_{d n \bmod N, n} \mid[n]_{N \mathbb{Z}} \in \mathbb{Z}_{N}\right\}
$$

- Step 4: Find \mathcal{H} or $d=\operatorname{dlog}_{g}(h)$ $d=(a(d n \bmod N)+b(d m \bmod N)) \bmod N$.

(2) Discrete Logarithm

(3) Breaking Bitcoin Signatures

- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

4. Grover Search Algorithm

DSA Protocol

Digital Signature Algorithm (DSA) Protocol	
	Public knows
Signer chooses a private key k creates a public verification key parameters \mathcal{A} by computing a $V=V(k, \mathcal{A})$	verification statement v and publishing it signs document by taking document d. computing a signature $s(d, \mathcal{A})$ and publishing it
verication key V signature s and can verify by checking the verification statement $v(s, d, V, \mathcal{A})=$ TRUE?	

(2) Discrete Logarithm

(3) Breaking Bitcoin Signatures

- Digital Signature Algorithms (DSA) Protocol
- Elliptic Curve Digital Signature Algorithm (ECDSA) Protocol

4. Grover Search Algorithm

ECDSA Protocol

ECDSA Protocol

The security of this depends on the difficulty of the calculation of k.

Remark

The computational steps to calculate $k=\operatorname{dlog}_{P}(V)$ for the bitcoin ECDSA:

- The classical method: order of $O\left(10^{77}\right)$.
- The quantum computer: order of O (polynomial in 256). Thus render the bitcoin signature insecure.

(1) The Abelian Hidden Subgroup Problem

(2) Discrete Logarithm

(3) Breaking Bitcoin Signatures

4. Grover Search Algorithm

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Brief ideas

750% in $0(\sqrt{N})$ steps

- Represent the objects as quantum states, i.e., normalized vectors in a suitable Hilbert space. The vectors of the objects which we try to find span a subspace in this Hilbert space.
- Construct operators that successively transform (or rotate) a given initial state into a state which has a maximal component in the subspace of desired objects.
- Measure the rotated states, with a greater probability of detecting a state which lies in the subspace of desired objects.

Remark

This method of rotating the initial state into the solution space is also used in other quantum algorithms and has become known as amplitude amplification.

(1) The Abelian Hidden Subgroup Problem

(2) Discrete Logarithm

(3) Breaking Bitcoin Signatures

(4) Grover Search Algorithm

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Algorithm

The number of computational steps $S_{G r o v e r}(N) \in O\left(\sqrt{\frac{N}{m}}\right)$ for $N \rightarrow \infty$.

- Input: A set $\{0, \ldots, N-1\}$ of $N=2^{n}$ objects

A subset S (solution set) of $m \geq 1$ objects to be searched for oracle-function $g:\{0, \ldots, N-1\} \rightarrow\{0,1\}$ that

$$
x \longmapsto g(x):=\left\{\begin{array}{l}
0, \text { if } x \in S^{\perp} \\
1, \text { if } x \in S
\end{array}\right.
$$

Oracle \hat{U}_{g} via the following action on the computational basis $\hat{U}_{g}(|x\rangle \otimes|y\rangle):=|x\rangle \otimes|y \boxplus g(x)\rangle$.

Remark

Every number $x \in\{0, \cdots, N-1\}$ can be uniquely associated with a vector in the computational basis of $\mathbb{\Phi} \mathbb{H}^{\otimes n}$.

Algorithm

- Step 1: Prepare the composite system in the state $\left.\left|\hat{\Psi}_{0}\right|\right\rangle=\left|\Psi_{0}\right\rangle \otimes|-\rangle$ in $\mathbb{H}^{I / O} \otimes \mathbb{H}^{W}=\mathbb{H}^{\otimes n} \otimes \mathbb{H},\left|\Psi_{0}\right\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.
- Step2 : Apply the transform $\hat{G}=\left(R_{\Psi_{0}} \otimes \mathbf{1}\right) \hat{U}_{g} j_{N}=\left\lfloor\frac{\pi}{4 \theta_{0}}\right\rfloor$ times to $\left|\hat{\Psi}_{0}\right\rangle$ in order to transform the composite system to the state $\left|\hat{\Psi}_{j_{N}}\right\rangle=\hat{G}^{j_{N}}\left|\hat{\Psi}_{0}\right\rangle$.
- Step3: Observe the sub-system $\mathbb{H}^{I / O}=\mathbb{\mathbb { M }} \mathbb{H}^{\otimes n}$ and infer from the observed state $|x\rangle$ the value $x \in\{0, \cdots, N-1\}$.
- Step4: By evaluating $g(x)$, check if $x \in S$.
- Output : A solution $x \in S$ with the probability no less than $1-\frac{m}{N}$ (Theorem 6.30).

(1) The Abelian Hidden Subgroup Problem

(2) Discrete Logarithm

(3) Breaking Bitcoin Signatures

4 Grover Search Algorithm

- Brief ideas
- For known number of Objects
- For unknown number of Objects

Algorithm

The number of computational steps $S_{\text {Grõver }}(N) \in O(\sqrt{N})$ for $N \rightarrow \infty$.

- Input: A set $\{0, \ldots, N-1\}$ of $N=2^{n}$ objects

A subset S of $m \geq 0$ objects to be searched for
An oracle-function $g:\{0, \ldots, N 1\} \rightarrow\{0,1\}$

- Step 1: Randomly select an $x \in\{0, \cdots, N-1\}$ and check if $x \in S$.
- If TURE: Done.
- If FALSE: Go to step 2.
- Step 2: Prepare the composite system in the state $\left.\left|\hat{\Psi}_{0}\right|\right\rangle=\left|\Psi_{0}\right\rangle \otimes|-\rangle$ in $\left.\mathbb{H}^{1 / O} \otimes \mathbb{H}^{W}=\mathbb{T}^{\otimes n n} \otimes \mathbb{I} \mathbb{H},\left|\Psi_{0}\right|\right\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$.

Algorithm

- Step3: Set $J:=\lfloor\sqrt{N}\rfloor+1$ and randomly select an integer $j \in\{0, \cdots, J-1\}$ with equal probability $\frac{1}{J}$. Apply the transform $\hat{G}=\left(R_{\Psi_{0}} \otimes \mathbf{1}\right) \hat{U}_{g} j$ times to $\left|\hat{\Psi}_{0}\right\rangle$ in order to transform the composite system to the state $\left|\hat{\Psi}_{j}\right\rangle=\hat{G}^{j}\left|\hat{\Psi}_{0}\right\rangle$.
- Step4: Observe the sub-system $\mathbb{H}^{I / O}=\mathbb{T} \mathbb{H}^{\otimes n}$ and read off the observed $x \in\{0, \cdots, N-1\}$.
- Step5: By evaluating $g(x)$, check if $x \in S$.
- Output: A solution $x \in S$ with the probability no less than $\frac{1}{4}$ (Theorem 6.32).

The End

